Rotordynamic Analysis of a Crankshaft
Application ID: 35841
See how to perform a vibration analysis of the crankshaft of a 3-cylinder reciprocating engine in this tutorial model. Due to the eccentricity of the crank-pin and balance masses on the crankshaft, it undergoes self-excited vibration under rotation. The crankshaft is modeled using solid elements to accurately capture the effects of the eccentricity of the crank-pin and balance masses.
The objective with this tutorial model is to demonstrate how you can study the transient response of the rotor and the orbits of the balance masses on the shaft. The simulation results include the stress and pressure profile in the crankshaft, orbits of the center of the journals, and lateral displacement components of a journal.
Note that the Solid Rotor interface is used to model the rotor, while the bearings are modeled using the Hydrodynamic Bearing interface.
This model example illustrates applications of this type that would nominally be built using the following products:
however, additional products may be required to completely define and model it. Furthermore, this example may also be defined and modeled using components from the following product combinations:
The combination of COMSOL® products required to model your application depends on several factors and may include boundary conditions, material properties, physics interfaces, and part libraries. Particular functionality may be common to several products. To determine the right combination of products for your modeling needs, review the Specification Chart and make use of a free evaluation license. The COMSOL Sales and Support teams are available for answering any questions you may have regarding this.