See How Multiphysics Simulation Is Used in Research and Development
Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2024 Collection
Our atmosphere, land, and water are being continuously besieged by pollutants caused by such events as heavy metals leaching from mine tailing ponds, chemical spills from railroad and truck tanker accidents, and petroleum pipeline failures, to name just a few. These environmental insults ... Read More
Plasmonic-based biosensors have emerged as a powerful, cost effective and portable platform for phatogen and biomarker detection. In particular, Localized Surface Plasmon Resonance (LSPR) based systems, which rely on resonance shift tracking, present high sensitivity, specificity and ... Read More
Devices which scavenge energy from ambient mechanical sources such as human body movement and ocean waves are undergoing rapid research and development. Both triboelectric and piezoelectric effects have been employed in the design of such devices. In this work, we use the MEMS Module in ... Read More
The Dirac equation is employed in particle physics and historically gave the first combined unification of quantum mechanics and relativity theory by introducing a four component wave function Ψn n=1…4. This wave function describes the behavior of fermion type particles. The effect of a ... Read More
With the use of COMSOL Multiphysics®, a full characterization of star shaped geometry structures of silver-zinc oxide (Ag-ZnO-Au) study is presented. Analysis with different thicknesses of gold cover, as well as with different lengths and additional arrangements of the structure have ... Read More
Numerous adsorptive media have been evaluated for the removal of inorganic contaminants in water, such as harmful heavy metals, toxic oxyanions, and radioactive species. Due to the complexity of water chemistry and chemical reactions at adsorptive media surface, lab-scale adsorption ... Read More
Over the past two decades, extensive research has been conducted on ultraviolet (UV) photodetectors (PDs) because of their potential applications across various fields including military, medicine, environmental monitoring, and deep space explorations. To fabricate solar-blind UV PDs ... Read More
本研究利用COMSOL软件进行超高频换能器的声场仿真和数据提取。首先,利用COMSOL固体力学模块和AC/DC中的静电模块对压电材料铌酸锂进行多物理场压电效应的建模。然后,利用压力声学频率模块和声结构边界多物理场进行压电材料振动产生声场的分布研究。其中对压电材料的二维轴对称的几何建模中利用了圆形分层拟合的球压聚焦,并通过调整坐标系改变压电材料的极化方向贴合于实际情况。此仿真预期得到球压后的超声换能器的聚焦特性,其中包括焦点位置(绝对声压最高点),横向分辨率(绝对声压横向分布的-6dB 半高度带宽值)和纵向分辨率(绝对声压纵向分布的-3dB宽度值) ... Read More
模型通过锂电池模块、传热模块、CFD模块的耦合实现。锂电池与传热采用弱耦合形式实现,而传热及流体采用强耦合形式实现。电芯产热与散热满足能量守恒定律。 根据三电极实测数据分别修正不同倍率充电条件电芯全电池电压、正参电压、负参电压,确定电芯动力学参数,完成模型的标定。热源包括正负极柱以及连接片焊接处产生的欧姆热,极组所产生的电化学热。流体属性及入口、出口的边界条件根据特定需求来设置。流体采用湍流中K-ε类型,流体对网格的要求比较高,流体网格需要加密并设置为流体静力学物理场来增加模型的收敛性,模型计算量较大,故采用分离式求解器。充电策略因为以时间作为阶梯充电倍率的转换依据 ... Read More
在微波加热的多物理场仿真中,如果被加热物体的几何区域太小或者太薄,会造成整个模型网格剖分困难、网格数量多且计算消耗内存大等问题。本文针对微波加热时薄壁容器的网格剖分困难,网格数量大,且占用计算机内存资源多的问题,提出了一种基于变换光学算法的微波薄壁加热模型计算优化方法。利用变换光学算法将薄壁区域空间扩大,通过改变薄壁区域内的介质参数来与原模型进行空间映射,从而避免网格剖分过程中的薄壁问题出现,这样可以在同样的网格剖分设置下减少整个模型的网格数量,节省计算时间,减少计算机内存资源的占用。通过相应的公式推导,在二维模型中实现了薄壁变换光学算法的计算 ... Read More