See How Multiphysics Simulation Is Used in Research and Development
Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2024 Collection
本作品通过研究微波炉矩形金属璧的单向移动,实现腔体内电场分布的变化,从而达到调节作用腔体内各点的电场分布的目的。图表1为仿真几何模型示意图,除了腔体内部的小块土豆,其余的腔体材料均为理想导体铜,腔体内为标准大气压下的空气。图表1中300mm30mm350mm矩形块的设计是为了更便捷地计算移动后的网格。本次仿真沿x轴正方向向外移动2的外侧面金属壁来实现腔体的移动。端口激励源为TE10模、频率2.45GHz、功率700W、相位为0的微波。图表2为金属壁移动示意图,通过软件的移动网格接口实现移动金属壁的仿真。仿真结果良好 ... Read More
近年来,三维系统级封装技术逐渐成为人们的关注焦点,是下一代集成电路封装设计最有发展潜力的实现方案。然而,热管理是系统级封装技术需解决的关键问题。图1是典型的系统级封装结构,包含堆叠芯片、硅通孔、封装基板、热界面材料以及多层凸点结构。若对该结构的所有细节进行建模,将会消耗巨大的计算资源,导致分析效率非常低下。因此,本论文将封装中的硅通孔层以及凸点层等复杂结构进行等效处理,提取它们在水平和垂直方向上的等效热导率以及等效比热容、等效密度等参数。例如,在建模过程中,采用 COMSOL Multiphysics® 传热模块对硅通孔层的水平方向等效热导率进行提取,边界设置如图2所示 ... Read More
定量分析生物颗粒形态的变化可以为疾病诊断提供依据。例如血红细胞形态的变化常常会伴随有相应的血液疾病[1],细胞的癌变常常伴随有细胞核形态的变化[2]等等。无标记的光学显微成像技术已经可以对生物颗粒的尺度和形状进行直接测量。光声显微成像技术 (PAM) 利用生物颗粒固有的吸光本领,已经可以对单个生物颗粒(如细胞和细胞器)进行成像[3]。 最近,光声流式仪(the photoacoustic flow-cytometry)已经实现了对单个生物颗粒进行连续检测[4]。然而,为了在大量的生物颗粒中快速检测生物颗粒的形貌,最好的方法是并非对其进行直接成像,而是采用高频光声显微技术 ... Read More
Radiofrequency ablation (RFA) is a minimally invasive procedure that can be used to treat chronic pain. Radiofrequency (RF) energy is emitted through a probe that is placed near a sensory nerve in the region of pain. The RF energy excites the nearby ions in the tissue causing them to ... Read More
Thermoelectric generators (TEGs) which convert heat into electrical energy due to Seebeck effect, have recently attracted a great attention as green and sustainable energy sources. One of the challenges in the field of thermoelectric devices is the design optimization in order to make ... Read More
Introduction Thermal management is a key challenge in development of modern microelectronics systems. This is becoming an increasingly critical area of microelectronics packaging design due to the ever increasing levels of miniaturisation, integration and operating frequency which result ... Read More
For the complex 3D biocompatible metallic parts, with high level of customization, used in medical prosthesis and implants Direct Metal Laser Sintering (DMLS) and Selective Laser Melting (SLM) are the most common Additive Manufacturing technologies used nowadays. However, both ... Read More
Several commercial CFD companies have recently extended their codes to magnetohydrodynamic (MHD) flows. However, there are many computational challenges associated with MHD flows under the harsh fusion environmental conditions that require such codes to be carefully examined in a special ... Read More
In Mexico there is a decline in the production of oil deposits due to the lack of effective treatment of oil emulsions, which generate a problem in the reinjection of emulsified water, transport of oil with high water content and corrosion in the oil refineries. Through the simulation ... Read More
A new nonvolatile memory device based on its resistance state has emerged known as resistive random access memory (RRAM). It operates by switching between the high resistance and low resistance states which can be interpreted as logical 0 and 1 variables. Understanding the resistive ... Read More