See How Multiphysics Simulation Is Used in Research and Development
Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2024 Collection
Since the 1980s, the accelerating effect of electromagnetic fields on bone regeneration is used to treat complicated fractures and bone diseases. At the University of Rostock, an electrostimulative hip revision system is developed, basing on the method of Kraus-Lechner. This method ... Read More
The main objective of this study is to verify the compliance of an ongoing nuclear facilities stack design with the ISO 2889 requirements, during normal and off-normal conditions. In particular, with the numerical simulations, they have been identify well-mixed sample locations along the ... Read More
Corrugated board is produced on a machine where the corrugated medium is glued between two flat paper surfaces, the liners. The board is cut into sheets and stored in a stack until suitable moisture content has been reached. The sheets are then cut and creased into blanks for the ... Read More
COMSOL Multiphysics® software is used to model the field joint application process on carbon steel pipelines for deep sea crude oil transportation, taking into account not only heat transfer, cure kinetics, and crystallization, but also thermal, cure and crystallization shrinkage and the ... Read More
The void shape evolution of silicon is a process driven mainly by surface diffusion which leads to a geometrical transformation of trenches etched in silicon wafers due to surface energy minimization. The temperature, the ambient gas and the annealing time affect the velocity of the ... Read More
Low-dimensional semiconductor nanostructures, in which charge carriers are confined in a number of spatial dimensions, are the focus of much solid-state physics research, offering superior optical and electronic properties over their bulk counterparts. Both two-dimensional (2D) and zero ... Read More
The use of high-resolution topography in the finite element model demonstrates that deformation from a shallow pressure source can be dramatically affected by overlying relief, not only in magnitude, but also in azimuth. This result is significant as it allows traditionally anomalous ... Read More
Sound energy distribution patterns within enclosed spaces are the basic concerns of architectural acoustics. Energy decays are analyzed for major acoustical parameter estimations, while spatial energy distribution and flow vectors are indicative in the analysis of sound energy ... Read More
In the paper, first a basic concept of the engineering approach for modeling and control of distributed parameter systems (DPS) based on interpretation of controlled systems as lumped input and distributed output systems (LDS) is introduced. Next, FEM modeling of temperature fields in ... Read More
The implementation of thermal insulation in old residential building walls could compromise the hygrothermal behavior of the construction, especially in summer time when it is placed inside. A bad installation of insulation could have consequences on the quality of indoor air conditions ... Read More