See How Multiphysics Simulation Is Used in Research and Development
Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2024 Collection
There has been a growing interest in optical parametric amplifiers (OPA) for light generation and amplification in because of the possibility for arbitrary operation wavelength and wideband tenability [1]. PCFs are of particular interest in such nonlinear optics applications because of ... Read More
Studies of the liquid metal movement (hydrodynamic) in a real object (tundish) are substantially precluded due to the objective difficulties (high temperature and the size of metallurgical equipment), compared to their execution by the use of physical and numerical modeling. In presented ... Read More
Calculations were carried out for the water model of the investigated tundish, represented on a scale 1:3. Numerical calculations enable to estimate the fluid flow velocities, pahtlines and other parameters. Calculations were done for two different grids. Based on the results, the flow ... Read More
In this paper, we present a 2D axisymmetric self-consistent plasma fluid model for microwave plasmas operating in argon. The model was developed using COMSOL Multiphysics and its Plasma Module. Plasma, flow, heat and electromagnetic equations solved self-consistently. The effect of the ... Read More
Today a horn driver developing is still time and cost consuming. In addition compression driver behavior depends by the horn profile. In this study is proposed a new technique to model a combination of an existing compression driver and a virtual horn, in order to predict the horn driver ... Read More
This paper introduces an efficient model to describe energy dissipation in acoustic. When the propagation domain has hard wall boundary conditions only viscous and thermal losses happen and are completely described by the so-called Full Linearized Navier-Stokes model (FLNS) which is ... Read More
Two Anode Surface processes are examined : Formation of Solid Electrolyte Interphase (SEI) and heating due to Shuttle Current. During charging, higher order sulfur species are reduced at the anode surface, while they are concurrently being oxidized at the cathode. This leads to the ... Read More
Laser assisted brazing with Al-Si fillers in V-shaped groove configuration is a perspective method for joining of aluminum alloys to titanium. The present work introduces multiscale model that allows estimating diffusion process at titanium/melted zone interface in function of thermal ... Read More
The Levant has been repeatedly devastated by numerous earthquakes since prehistorical times. In order to understand the role of the dynamics of the water bodies in triggering the deformations in the Levant basin, a new theoretical thermo-mechanical model is constructed and extended by ... Read More
The microband design of microelectrodes is a cost-effective and easily-fabricated compromise combining convergent mass transport, due to microscale width as a critical dimension, and high output currents due to the macroscopic length. Among the various techniques available for microband ... Read More