See How Multiphysics Simulation Is Used in Research and Development
Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2024 Collection
Surface Enhanced Raman Scattering (SERS) phenomenon is well known for its detection sensitivity, however, to better understand how it works a better insight needs to be developed on the physics behind the phenomenon. The physical aspects known to produce SERS effect are the use of ... Read More
Mid-infrared, which interacts with most of the chemicals and creates spectra with functional group and fingerprint information, is widely used as a chemical sensing method for a variety of applications, including biomedical testing, quality control in electronics manufacturing and food ... Read More
Electromagnetic sounding measurements utilize magnetic induction to constrain the interior geophysical properties of planetary bodies. Under some conditions, the Earth’s moon can be approximated by the response of a conducting sphere in a vacuum. Transient magnetic fields originating ... Read More
Partial differential equations (PDEs) govern many phenomena in nature. Solving optimization problems which comprises the solution of large number of PDEs, is expensive concerning time and memory. Therefore, to reduce the solution cost, original problem is transformed to a corresponding ... Read More
Electromagnetic radiofrequency (RF) sources are widely used to heat up cutaneous and subcutaneous tissues. The subcutaneous morphology of tissue consists of a fine, collagenous and fibrous septa network enveloping clusters of adipocyte cells; however, it is commonly regarded as a ... Read More
在电磁兼容领域中,除了电磁干扰还会存在毁灭性的电磁辐射危害。其中电磁辐射对燃油危害的研究关键在于掌握射频放电的击穿特性,为研究不同频率的击穿特性,本文基于电磁场和电路理论,以飞机油箱口结构为例构建了氩气射频放电前后的等效电路模型,并简要分析了射频放电规律。根据电磁场和电路理论,飞机油箱口放电结构等效为圆柱型交流电容,等效电路的并联电阻阻值随气体的导电性能变化而变化,能有效表征气体击穿电离程度的高低。仿真研究表明,相同激励电压条件下,频率越高,气体越容易击穿,等效并联电阻阻值越低。气体击穿电离程度随频率升高存在不连续放电、连续稳定放电、积累效应和雪崩效应四种不同的放电规律。 Read More
Diabetes is a chronic noncommunicable disease which lays a heavy burden on many impoverished communities globally. The ability to monitor and manage the disease is one key component to lessening its impact. 3D printing (3DP) offers an economical manufacturing method to produce medical ... Read More
Laser surface texturing has emerged as a promising texturing technique due to properties such as excellent repeatability, non-contact process, the ability to achieve small-size features and high-quality finishing. The work described here is part of the H2020 research program called SHARK ... Read More
Several permanent-magnet excited rotor types for a brushless DC motor can be designed regarding their applicability based on the arrangement of the permanent magnets; since the rotor configurations strongly influence the performance of permanent magnet electrical machines. Surface ... Read More
Electromagnetic micro valves are currently developed empirically or the different physics are treated separately. To accelerate the development-process and for a better understanding of the overall system, a multiphysics simulation is built up. This simulation considers the ... Read More