See How Multiphysics Simulation Is Used in Research and Development
Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2024 Collection
This paper documents current status in the development of a coupled thermal-hydraulic-chemical-geomechanical numerical suite within COMSOL-MATLAB environment to address soil and concrete applications. The mathematical formulations are based on well-established continuum scale models ... Read More
A model for the conjugate simulation of heat and moisture transfer inside porous materials and fluid domains is implemented in COMSOL Multiphysics®. The results of this model are compared with those obtained through a simplified approach: the line-source approach. The models are both ... Read More
Coalescence of droplets is a widely investigated phenomenon. In inkjet printing micrometer sized droplets are deposited on a substrate which when positioned close enough to each other will coalesce and mix. Little is known about the flows and mixing behaviour within these small droplets. ... Read More
The heat and mass transfer processes occurring in a domestic oven is in detailed analyzed in this work, with the final objective of improving the global energy efficiency of the system. A 3D Finite Element model developed with a Multi-physics approach is validated with the experimental ... Read More
Kheer is a popular Indian dairy dessert prepared from concentrating milk with simultaneous cooking of rice grains. Conventional methods of preparing kheer have limited its mechanized production. Therefore, a conceptual design of continuous kheer-making machine has been prepared which ... Read More
When rice is subjected to intense heating, it results in rapid evaporation of liquid water to vapor. As a consequence, large pressures are generated within the kernel in a span of 15s resulting in large volume changes causing the kernel to puff rapidly. Under suitable conditions, the ... Read More
In this work we investigate computationally the use of spiral channels at Reynolds numbers from 25 to 900 as a mixing structure (Figure 1) using COMSOL Multiphysics, the CFD Module, and the Chemical Species Transport physics. In this system, the centrifugal forces experienced by the ... Read More
Microwave drying of fruits and vegetables in a domestic oven has been found to result in large textural changes in the product such as puffing, crack formation and even burning due to the inhomogeneous heating of the microwaves. Microwave drying of potatoes is a complex interplay of ... Read More
A continuum, porous medium formulation with non-equilibrium sublimation was developed and validated for freeze drying without and with uniform microwave volumetric heating. The model incorporates the effect of Knudsen flow at low pressure and low permeability freeze drying. The ... Read More
Transient, two-dimensional (axisymmetric) simulations of a cigarette subject to realistic static and forward smoldering cycles were performed. The computational domain consists of a porous packed bed of tobacco and a filter surrounded by a thin, porous paper and a region of surrounding ... Read More