Coordination Of Time-Dependent Simulation Parameters
Using COMSOL Application Builder

Paul Belk, Ph.D. !, Anna Harrington, Ph.D]

1Boston Scientific

Abstract

The COMSOL Application Builder can tie a custom user interface to application-specific Java
code. This functionality can be used to automatically coordinate changing model characteristics
across multiple model nodes. A simple user interface can therefore allow simultaneous
specification of multiple simulation parameters, for example, changing boundary conditions and
simulation evaluation times, and so greatly simplify the specification of individual simulation runs.
While critical for allowing novice users to perform COMSOL simulations, this capability is also of
great value to sophisticated COMSOL users, especially given the "add-in" capability for using
Application Builder forms in the Model Builder interface.

In a time-dependent simulation, the model must be re-evaluated when external simulation factors
change. These factors may include variable boundary conditions or variable material parameters.
Often, even the time scale of the change is unpredictable, making it inconvenient to specify
simulation evaluation times and functional characteristics such as smoothing parameters.

We demonstrate a simple application interface that allows for advanced timing of user-specified
current pulses in a battery simulation. While the COMSOL Application Builder allows for a
straightforward user interface, the power of the approach is the Java Method code behind the
application. This code calculates ideal time-dependent simulation parameters and seamlessly
integrates them into the overall simulation, including display of results. The code takes user-
specified tabular inputs (e.g., number of pulses, current amplitude, pulse duration, etc.) to
generate a customized piecewise current function, and to specify coordinated evaluation times
for optimum simulation speed. An optimized graphical display allows for automatic zooming into
pulse regions of interest.

The application builder provides an automated approach to modeling a wide range of time scales

with irregularly changing boundary conditions, while eliminating the tedious and error-prone
process of manually coordinating study time parameters when specifying simulations.

Figures used in the abstract

L A — —
~od <‘L_> 3 —
Check Initialize Compute Compute

ulse Study EIS

Ribbon Section 1

Geometry ~Cathode Recipe Protocol Physics Voltage vs. Time Pulse Qutput Voltage vs mA hrs Voltage vs DOD Pulselnfo = Nyquist Plot
Default background current: 68 uA —
Q@ v BE & &
Interval of times[nTime] 1 S . U[] '
Pulses Cathode Voltage vs Time (Pulses) 2
T T T T T T T T
Delay to first pulse: 4E6 s
3F —2) B
» -
Pulses | Current (mA) | Pulse Width (s) = Pulse Period (s) | Train Recovery (s) 208l Nominal |
2 L] 3 60 120 ' — b
1 15 5 30 50 =
4 10 10 30 50 e ‘ L T]
S \ \(ru \I 7
= _
IS
2 _
o
= a
-E 2.86| g
initial DOD: 17 % ? b1 S - -]
a o 284f [— g
simulation time: 70[d s 2
Ll . 2821 E
Capacity used at background 142 mAh 28
Capacity used by pulses 0.174 mAh 278
Final DOD 10.3 % ?
. 276 4
Simulation Log of Parameter Output vs. Nominal:
2.74F -
Pulse 1) L s L L ; L L L
Pulse 2) 0 50 100 150 200 250 300 350

time from pulse start (s)

Figure 1 : Ul screen showing 3 battery simulations. Current pulses are specified for third
simulation. Pulse spacing, duration and amplitude are all irregular.

e DR »o- s EDEDIENR-

Home Method
6 O
New New

Model Model
Builder Manager Form = Method ~

Workspace

Application Builder
— —+ T ‘L Bt E

Type filter text

v Bld14_13.mph (roct)
@ Inputs
% Themes
» D Main Window
v [Forms
» D rmain
Events
» = Declarations
v By Methods
printHelp
Compute
updateGraphs
calcPulses
calculateCapacity
updateDC
updateGeom
verify
switchPhysics
changePhysics
startUp
pDelt
reMom

=
=

i

raries

"5 Data Access = Settings QEAdd—in Definition
E. Record Method [E[) Editor Tools

Main

& Event abc abc abc

=
T Timer)

Application Scalar Array Array More
Argument - 1D~ 2D~ Declarations
Add-in Inputs Events Declarations

~ 1 @ Preview D Main Window D rmain printHelp D main: Protocol calcPulses X

84
85 pTime += (period-dur);
86 model.func{pwlbl).setIndex("piccez", pTime, piece, 1); // end of piece
88 model.func{pwlbl).setIndex("picces", 8, piece, 2); // amplitude of piece
lastPulse = pTime;
++piece;

¥

model.func(pwlbl).setIndex(" picces", pTime, piece, @); // start of piece
pTime += (recovery- (period-dur));

model.func(pwlbl).setIndex(" pieces", pTime, piece, 1); // end of piece

model.funcipwlbl).setIndex("picecez", 8, piece, 2); // amplitude of piece
++piece;

[t

}

double dt = (total_q*3.6/i_bg)/75;
fralert(String.format("time to kill 1%¥ at background %.2e s", dt), "Quantum");
String timeStr = toString(times[@]);
double curT = times[@];
- for (int 1 = 1; i <« nTime; ++1i) {
double nextT = times[i];

] et
1 @ (]

-
@
-
@
-
@
-
@
-
184
a
@
-
@
-
@
-
@
-
@

while (nextT-curT > dt) {
curT += dt;

111 timeStr += ,";

112 timeStr += toString(curT);

@ W0

113 i

114

115 = if (curT < nextT) {

116 timeStr += .7

117 timeStr += toString(times[i]);
118 ¥

113 T

122 jralert(timeStr, “"Times");
123 model.sol({"=cll"). feature("tl").set("tlist", timeStr‘);|

Figure 2 : Application Builder interface showing Java code that calculates current pulse function,
while also providing coordinated evaluation times.

	Coordination Of Time-Dependent Simulation Parameters Using COMSOL Application Builder
	Abstract
	Figures used in the abstract

