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Abstract 

Some protein gels are products of the dairy industry and some are used as 

pH-sensitive gels for the controlled delivery of biologically active substances. To 

understand the dynamics of drug delivery it is very important to establish a 

mathematical model of protein gel swelling. This required the identification and 

integration of theory and equations from a wide range of topics. The aim of this 

research was to develop a mathematical model of transport in polyelectrolyte gels 

(using the example of β-lactoglobulin protein gels).  

 

A complete mathematical model of protein gel swelling was established. The swelling 

process of protein gels in this thesis involved multicomponent diffusion, chemical 

ionisation and mechanical deformation. Diffusion of electrolyte solutions through 

protein gels was modelled using the generalised Maxwell-Stefan (GMS) equation. 

The swelling pressure as a driving force in the GMS equation was described by rubber 

elasticity theory. Thermodynamic factors including the charged protein effect were 

considered in the GMS equation. The model included pH as a variable so it could be 

applied to both acidic and alkaline cases.  

 

The model yielded a set of partial differential equations with algebraic equations for 

which COMSOL was selected as the simulation software. Although it was found that 

COMSOL could not always solve the model equations, numerical solutions were 

obtained for several cases. The model predicted that the equilibrium swelling degree 

of the gel decreased with high concentration of salts in the bulk solution. The model 

also predicted that the non-ideal effects were not always small and they depended on 

the activity coefficients of the species. Satisfactory solutions could not be obtained for 

all cases using commercial software such as COMSOL Multiphysics. It was shown 

that COMSOL did not conserve mass but conservativeness was critical in this 

application because pH and hence the net protein charge is very sensitive to the mass 
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 iv 

of hydrogen present. 

 

In the future, research should be carried out to improve the pressure model in the 

GMS equation. Theoretical research on Manning condensation theory should be done 

to modify Manning‘s model for more robust prediction of activities of water and ions 

with protein, and experiments should be done to validate the performance of the 

modified Manning model. Efforts should be made to write the programming code for 

a finite volume method to solve the system in three dimensions.  
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 1 Introduction 

Polymers are macromolecules consisting of many small molecules that are linked 

together to form long chains. There are naturally occurring polymers such as starches, 

proteins and rubber. Many polymers can be cross linked to form elastic solids. A 

particular kind of polymers that have attracted a lot of attention in recent years are 

hydrogels. 

1.1  Hydrogels 

Hydrogels are water swollen polymers with a tendency to absorb water when placed 

in an aqueous environment. Hydrogels have attracted research interest over recent 

years because of the potential for a wide range of applications. They have been 

successfully used in biomedical fields due to their high water content. Successful 

examples include soft contact lens, superabsorbents and drug delivery systems (Li and 

Tanaka, 1992). Hydrogels can be divided into two categories based on the chemical or 

physical nature of the crosslink junctions. Chemically crosslinked networks have 

permanent junctions, while physical networks have transient junctions that arise from 

either polymer chain entanglements or physical interactions such as ionic interactions 

or hydrogen bonds. Hydrogels can also be classified as neutral or ionic based on the 

side groups of the polymers. For neutral hydrogels, the degree of swelling only 

depends on the chemical compositions of the polymers. Ionic hydrogels contain ionic 

groups, such as carboxylic acid. The swelling of ionic hydrogels depends not only on 

the chemical composition of the gel but also on the pH of the surrounding medium. 

Generally speaking anionic hydrogels deprotonate and swell more when the external 

pH is higher than the pKa of the ionisable groups on polymer chains while cationic 

hydrogels protonate and swell more when the external pH is lower than the pKb of the 

ionisable groups on polymer chains as shown by Figure 1.1 (Lin and Metters, 2006).  
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 2 

 
Figure 1.1 Schematic of relative ionic hydrogel swelling as a function of pH adapted from Fig. 2 in Lin 

and Metters (2006) 

 

1.2  Polyelectrolyte gels 

Polyelectrolytes are substances obtained when ionic groups are incorporated in a 

polymer chain, combining the properties of electrolytes and of polymers. Many 

natural and synthetic macromolecules are polyelectrolytes. Most tissues of plants and 

animals contain polyelectrolytes. Except for bones, teeth, nails and the outer layers of 

skin, most living organisms are largely made of polyelectrolytes (Hong et al., 2010; 

Osada and Khokhlov, 2002). The DNA, the carrier of genetic code, is also a 

polyelectrolyte (Manning, 1979). The ionic groups on the polymer chain dissociate 

when the molecule is in solution generating a long charged chain and large number of 

small ions of opposite charge. Since the chain units, covered with like charges, repel 

each other, the chain stretches out. The counter-ions can exist in two different states; 

some of them are condensed on the molecule chain and others are mobile in solutions 

(Manning, 1969a; 1969b). Figure 1.2 shows a representation of a polyelectrolyte gel. 
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Figure 1.2 A polyelectrolyte gel with distribution of fixed and mobile charged ions (Berkenblit et 

al., 1995) 

 

A large number of flexible polyelectrolytes can form a three-dimensional network by 

covalent crosslinks. When immersed in a suitable solvent, often called ―a good 

solvent‖, small solvent molecules can migrate into the network, forming a gel (Maurer 

and Prausnitz, 1996). Inside the gel, cross-links prevent the complete mixing of the 

polymer chains and the solvent by providing an elastic restoring force that counters 

the expansion of the network. The liquid prevents the network from collapsing 

(Grimshaw et al., 1990). As a result, the gel swells and shrinks reversibly as the small 

solvent molecules migrate in and out. The volume of the gel is typically many times 

the volume of the dry network (Hong et al., 2010).  

 

Polyelectrolyte gels are ionic hydrogels. Like hydrogels, polyelectrolyte gels are also 

widely used in technologies due to their swelling ability caused by external stimuli 

such as outside solution concentrations, pH, temperature and applied electrical field. 

This includes super-absorbent materials (Buchholz and Peppas, 1994), drug delivery 

(Uhrich et al., 1999) and artificial muscles (Lee and Mooney, 2001). In recent years, 

polyelectrolyte gels have become increasingly important carriers for the development 

of drug devices. For example, polyelectrolyte gels with pH-sensitivity are especially 

suitable as carriers for oral protein delivery systems due to their pH-dependent 

swelling behaviour. In the acidic environment of the stomach, these gels are in the 

collapsed state. Therefore, proteins incorporated in the gels are protected, while in the 

abs14
Highlight



 4 

basic and neutral environments of the intestine, the gels are swollen and proteins are 

released (Lowman and Peppas, 2000; Siegel, 1990). 

 

The state of swelling is generally characterised by the degree of swelling, Q, which is 

defined as the quotient of the final volume Vf and the initial or preparation volume V0. 

It is the same as the quotient of the volume fractions of the network in the initial and 

final gel, ϕp0 and ϕp, respectively. 

 
𝑄 =

𝑉𝑓

𝑉0
=
𝜙𝑝0

𝜙𝑝
 (1.2.1)  

The degree of swelling is limited to a maximum, equilibrium degree of swelling, Qeq. 

In the 1940‘s, Flory was the first to establish a theory to predict the equilibrium 

degree of swelling. His theory is presented in Section 2.5.1. 

1.3  Protein gels 

The protein molecule consists mainly of amino-acids linked in a linear chain which is 

folded into a globular form. The principal bond is the peptide link between the 

carboxyl groups and the amino groups. All amino acids found in proteins have the 

basic structure shown in Figure 1.3, differing only in the structure of the R-group. 

 

Figure 1.3 Basic structure of an amino acid 

 

Normally the amino acid produces a nearly neutral solution. The different properties 

of amino acids result from the structures of different R groups. The R group is often 

referred to as the amino acid side chain. If there is an extra acid on the side chain, 

there is a net acid producing effect. If the side chain contains an extra amine group, 

then the amino acid produces a basic solution. In β-lactoglobulin proteins, acidic 

amino acids include aspartic (Asp) and glutamic (Glu) and basic side chains include 
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lysine (Lys), arginine (Arg) and histidine (His).  

 

There can be an internal transfer of a hydrogen ion from the –COOH group to the 

–NH2 group to leave an ion with both a negative charge and a positive charge. This is 

called a zwitterion shown in Figure 1.4. 

 

Figure 1.4 The internal transfer of H 

 

Proteins gels can be found in the dairy industry. Milk is composed of water, 

carbohydrate, fat, protein, minerals and vitamins. Pasteurisation and sterilisation are 

generally used in milk processing. In pasteurisation, milk receives mild heat treatment 

to reduce the number of bacteria present. In sterilisation, milk is subjected to severe 

heat treatment that ensures almost complete destruction of the microbial population. 

Both result in the fouling deposits on heat transfer equipment surfaces. The deposits 

consist of proteins, fats, sugars and mineral salt. Among them, whey proteins, and 

especially β-lactoglobulin (βLg) (Mercadé-Prieto et al., 2006, 2007), constitute the 

bulk of fouling deposits and thus some fouling deposits are considered to be primarily 

heat-induced protein gels. Whey proteins are also co-products of the cheese industry. 

Like polyelectrolyte gels, protein gels may be used as pH-sensitive gels for the 

controlled delivery of biologically active substances and they may also be formed into 

nanoparticles which entrap drugs or bioactive compounds within but not chemically 

bound to them (Gunasekaran et al., 2007). This research is focused on modelling 

transport in polyelectrolyte gels (using the example of β-lactoglobulin protein gels). It 

is important not only for explaining process and geometry dependent material 

properties but also for predicting dynamic properties such as swelling rates and ion 

fluxes. 

 

abs14
Highlight

abs14
Highlight



 6 

In the author‘s master of engineering research (Lu, 2007) a simple, yet effective 

dynamic model of diffusion of electrolytes in gel was established. The dynamics of 

diffusion of electrolytes in a protein gel were successfully described on the basis of 

the generalised Maxwell-Stefan description. The model can be applied to several 

cases including electrolytes only and electrolytes with a gel. The model yielded 

differential equations solved numerically by discretisation in place and time. The 

numerical solutions were obtained by using MATLAB® ODE15S. However this was 

only a good start and can be improved in many aspects. For example, the gel 

geometry was considered constant. The study of swelling behaviour of a gel should 

include a moving geometry. More work was required on the thermodynamics of 

solutions. More research was also required to investigate the swelling of the gel and 

the effects of ionic forces, the pH and the concentration of the salt. 

1.4  Aim of this research 

Models to describe swelling of gels that can be found in literature have two major 

limitations. One is that many models describe equilibrium swelling but not dynamic. 

The other is that most models describe two-component systems and cannot be 

extended to multicomponent systems. Even when dealing with multicomponent 

systems, models are usually based on Fick‘s law which is not reliable in the case that 

involves multicomponents and a gel, or use Nernst-Planck equation as a simplified 

model for multicomponent diffusion. A detailed review on previous modelling of 

diffusion in polyelectrolye gels will be given in Section 2.1. Table 1.1 presents the 

summary of those models. None included variable pH. 

 

Protein gels in an aqueous solution are net charged depending on the pH of the 

surrounding solution. Modelling the swelling of polyelectrolyte gels has always been 

a difficult and complicated task. Systems can involve numerous coupled partial 

differential equations and can be complicated or impossible to solve analytically. 

Numerical methods are frequently used in an attempt to predict the swelling, but these 
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 7 

are usually limited by the numbers of equations involved.  

 

Table 1.1 Models in literature 

Authors Dimensions Components Diffusion Elastics Pressure Thermodynamics 

Tanaka et al. 

(1973, 1979) 
1 2 Dynamics0 Hooke‘s law No Ideal 

Hasa et al. (1975) 1 2 
Equilibrium 

swelling1 
Flory-Huggins Osmotic Non-ideal 

Grimshaw et al. 

(1990) 
1 3 Nernst-Planck Hooke‘s law Osmotic Ideal 

Bisschops et al. 

(1998) 
1 2 Maxwell-Stefan Flory-Huggins No2 Ideal 

Horkay et al. 

(2000) 
1 23 

Equilibrium 

swelling1 

Rubber 

elasticity 

Three 

contributions4 
Ideal 

Zhang et al. 

(2009) 
3 2 Fick Flory-Rehner No Ideal 

Wallmersperger et 

al. (2011) 
1 45 Nernst-Planck 

Stress-strain 

relations 
Osmotic Ideal 

0
 The equation of the network motion was used. 

1
 In equilibrium swelling concentrations were obtained by Donnan equilibrium. 

2
 There was no pressure term in the model however a Flory-Huggins polymer-solvent mixing term was 

used as the driving force for the Maxwell-Stefan diffusion. 
3
 Two components were a polyelectrolyte gel and one salt solution and other two components were 

water and a neutral gel. 
4
 The three contributions were the elastic pressure obtained from the theory of rubber elasticity, osmotic 

pressure due to the mixing of network chains and solvent molecules expressed by the Flory-Huggins 

and osmotic pressure due to mixing of ions with solvent molecules and interactions between ions, 

polymer segments, and solvent molecules. 
5
Four components included a polyelectrolyte gel, bound charges in the gel, water and oxonium. 

 

Based on my previous research, the aim of this research was to extend the previous 

model to any situation (acid and base conditions) involving diffusion, swelling and 

external forces such as pressure and electrical potential and to be able to set up the 

dynamic model of protein gel swelling. 

 

The scope of the research was set as follows: 

 

 The model was to be based on the Maxwell-Stefan equations, and therefore take 

into account the diffusive interaction between all components. The model is 
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easily extended to multiple ion systems. 

 The model was to have as few assumptions as possible without omitting terms. 

This would be the challenge of the work. For example, thermodynamics would be 

difficult. Although there are several models to calculate ions and water activities 

in multi-electrolyte systems, it is very difficult to define the activities in real 

simulations caused by interactions between ions and the charged polymer.  

 The model was to be able to handle both acid and alkali situations. 

 As a complete system for standard equations, COMSOL Multiphysics was to be 

used to obtain simulation results because of its power in solving coupled systems 

of partial differential equations. 

 The model was to apply to a 3-dimensional system. 

 

The rest of the thesis is organised as follows: 

Chapter 2 explains all the relevant theories which can be selected to set up the model 

such as the generalised Maxwell-Stefan theory, rubber elasticity theory, continuity 

equations and mechanical structure equations. A key feature of this thesis was the 

selection and interpretation of relevant literature within a wide range of topics and 

over a time period from the 1940‘s until now. After that, Chapter 3 is an introduction 

of COMSOL including some modelling examples. Chapter 4 presents the complete 

mathematical model for the dynamics of a polyelectrolyte gel system composed of 

partial differential and algebraic equations (PDAEs). The challenge was to combine 

the wide range of models of each feature of the system into a single coherent model. 

Chapter 5 provides simulation results and discussion. Chapter 6 presents the overall 

discussion, conclusions and recommendations for future work. 
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 2 Literature and model components 

Studying the swelling process of polyelectrolyte gels has always been a difficult and 

complicated task. Systems can involve numerous coupled partial differential 

equations and can be complicated or impossible to solve analytically. Numerical 

methods are frequently used in an attempt to predict the swelling response but they 

are also limited by the numbers of equations involved. 

 

The overall swelling process consists of many different processes that all occur 

simultaneously. A concentration difference within a gel or between a gel and bulk 

solution may create a chemical potential across the gel. Under this potential, free ions 

and water in the gel and bulk solution regions migrate and diffuse through the 

polymer matrix. The extra water introduced into the gel causes deformation or 

mechanical swelling. As a result, this deformation leads to a local displacement of the 

gel network. From this description, it is clear that the swelling process involves 

theories in different areas: multicomponent diffusion, chemical ionisation and 

mechanical deformation. Therefore, it is of utmost importance to study all the theories 

involved before the complete swelling model of a polyelectrolyte gel is set up. In this 

chapter the theories of equations for each part of the model are drawn from literature 

and developed for use in this thesis. 

2.1  Overview of past research on polyelectrolytes 

Because of the wide use of polyelectrolyte including protein gels in many areas, many 

researchers have interest in this field. For applications as drug carriers or in cleaning 

of milk fouling, the diffusion of solutes into polymer networks and the resulting 

swelling of the networks are very important and need to be understood very clearly.  

 

Previous work by researchers in the area of milk fouling has been largely focused on 

the experimental studies in order to obtain a good understanding of the cleaning 
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behaviour. A recent review of milk fouling in heat exchangers is given by Bansal and 

Chen (2006). 

 

Xin et al. (2004) did an important experimental study on the removal of a protein 

foulant from metal surfaces. They introduced a polymer dissolution concept to 

describe the complicated protein deposit cleaning process. The essential steps of the 

cleaning are: the diffusion of the cleaning agent from the bulk solution into the top 

layer of the deposit, the reaction of the cleaning agent with the deposit, the formation 

of the swollen gel and finally the diffusion of the disengaged protein from the gel 

surface into the bulk solution. They proposed a simple mathematical model to 

estimate the cleaning rate and cleaning time for proteinaceous fouling. The good 

agreement of experimental results and model predictions supported the modelling 

concepts used. Although the model in the paper cannot be applied in removing large 

aggregates, the model provides a good foundation for further studies on the cleaning 

mechanisms of protein-based milk fouling. 

 

Mercadé-Prieto and Chen (2006) tried to analyse each protein cleaning step proposed 

by Xin et al. (2004). In their research, they firstly examined the sodium hydroxide 

solution diffusivity at different pH values at 22 
o
C. Then they studied the influence of 

dissolution pH of proteins. Finally, they considered the influence of temperature on 

the dissolution process. They found that the diffusivity of NaOH in a protein gel was 

about two thirds of that in water. They also found that at a low dissolution pH, 

between 12 and 13, the dissolution rate started from a small value and it reached a 

constant value after a time. At a high dissolution pH, on the other hand, this rate 

showed a decreasing trend. They found that at high temperatures, the dissolution rate 

decreased with time, and the remaining gels became more yellowish. 

 

Mercadé-Prieto et al. did considerable work on the study of heat-induced 

β-lactoglobulin (βLg) gels. During two years between 2006 and 2007, this research 

group produced five papers on this field. 
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Mercadé-Prieto et al. (2006a) investigated the influence of the gel structure on the 

dissolution rate of heat-induced βLg gels. The dissolution rate profile of βLg gels was 

found to resemble those reported for whey protein concentrate gels (Mercadé-Prieto 

and Chen, 2006). The dissolution rate profiles observed at high alkaline pH (>13) 

were smaller and decreased over time, which was similar to the result reported 

previously for whey protein concentrate gels (Mercadé-Prieto and Chen, 2006). 

Therefore they reached the conclusion that βLg can be used successfully as a model of 

whey protein. They also developed the idea that swelling may be related to the low 

dissolution observed at high pH. The group found that at high salt concentrations the 

swelling ratio of βLg gels decreased. The addition of salts greatly reduced the 

dissolution rate. However, they did not provide accurate swelling rates at high pH 

owing to the gels undergoing dissolution. 

 

Mercadé-Prieto et al. (2006b) further studied the influence of the gel structure on the 

dissolution rate of βLg heat-induced gels. The results were similar to the previous 

findings (Mercadé-Prieto et al., 2006a). They found that the dissolution behaviour was 

strongly influenced by the condition under which the gel was formed. At low alkaline 

pH values (<13), the dissolution rate decreased with longer gelation time and higher 

temperature. In addition, they observed an inverse relationship between the 

dissolution rate and the amount of covalently cross-linked proteins in the gel. 

 

Mercadé-Prieto et al. (2007a) studied the polyelectrolyte screening effects on the 

dissolution of whey protein gels at high pH conditions. In this study, they provided 

strong evidence that the dissolution rate was affected by the equilibrium-swelling 

ratio in βLg gels. The swelling ratio was reduced in the presence of salts because of 

the polyelectrolyte screening effect of the cations. At high dissolution pH (>13.3), the 

high sodium ion concentration reduced swelling in spite of the high surface charge of 

the protein. They also observed that the final dissolution rate of gels pre-soaked in 1M 

sodium hydroxide or sodium chloride was similar, even though their pH values were 
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different. This dissolution rate was much lower than that of untreated gels. The reason 

for this was that the high sodium ion concentration in the soaked gels hindered 

swelling, and inhibited the disentanglement of the protein clusters regardless of the 

high pH. 

 

Mercadé-Prieto et al. (2007b) presented a simple model for the swelling of protein 

gels including the effect of solvent pH and ionic strength. They developed the model 

for the swelling equilibrium, which meant the difference between the ionic 

contributions from the chemical potential inside the gel and in solution equalled the 

sum of the contributions to the chemical potential of the mixing and elastic forces. 

Because the model was derived for equilibrium state, it cannot be applied for the 

study of the dynamic behaviour of the swelling mechanism. However, the paper 

provided many useful experimental results. Particularly, Figure 7 in the paper 

(Mercadé-Prieto et al., 2007b) (Figure 2.1 below) showed the effect of the molar 

electrolyte concentration in solution on the equilibrium swelling ratio for sodium 

chloride electrolyte. 

 

Figure 2.1 Figure 7 from Mercadé-Prieto et al. (2007b) 

 

Mercadé-Prieto et al. (2007c) believed that there was a pH below which the 

dissolution rate was very low and above which the dissolution rate was high. Thus, 
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they carried out a series of experiments to confirm and characterise the existence of 

such pH threshold for the dissolution of heat-induced βLg gels. They did observe a 

sharp transition in solubility between pH 11 and 12 and this transition shifted to 

higher pHs for gels formed at higher temperatures and for longer gelling times. They 

also found the destruction of large aggregates was faster at higher pH and this 

destruction also showed a transition between pH 11 and 12. 

 

Gunasekaran and co-workers (2007) did experiments to investigate the use of whey 

proteins as pH-sensitive gels and nanoparticle systems. They used caffeine as a model 

bioactive, and encapsulated this in a commercial whey protein concentrate. They 

reported that the gels exhibited a pH-sensitive swelling especially at pH values above 

their isoelectric point (pI, the point at which the gels are not net electrically charged). 

They also reported that the release of encapsulated model drug from the gels was 

slower when the pH was below isoelectric point than when it was above pI.  

 

There have been numerous studies of swelling of polyelectrolyte system in the 

presence of different stimuli. Some early experiments were carried out by Loeb (1921) 

who used gelatine in the presence of HCl and any one of NaCl, NaSO4, or CaCl2 and 

found the swelling, electrical potential and osmotic pressure were affected by the 

ionic concentration. Katchalsky (1949) and Kuhn (1949) independently reported on 

chemo-mechanical deformation of collagen fibres, and raised the possibility of using 

these materials as artificial muscles. They suggested that by varying the pH of a 

surrounding solvent, the polymers could be chemically contracted or swollen, thus 

behaving as an artificial muscle. A year later, Kuhn et al. (1950) demonstrated that 

this suggestion was correct.  

 

Tanaka et al. (1982) demonstrated electrical influence on certain polymers. In their 

experiment, an acrylamide cylinder was submerged in a 50:50 acetone-water solution 

under the influence of a 5V DC electric field. It was found that by reversing the 

polarity of the applied field, the gel could swell to a volume 500 times its original. 
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Later, this result was confirmed by De Rossi et al. (1986) by experiments on strips of 

polyvinyl alcohol and polyacrylic acid gels. Grimshaw et al. (1990) demonstrated the 

electrically induced swelling of a thin poly (methacrylic) acid membrane compressed 

between two regions with different chemical potentials, thereby introducing the 

concept of an electrical-chemical interaction. Osasa et al. (1992) extended this work 

and demonstrated a Grimshaw‘s example of electrically-driven motility of a polymer 

gel.  

 

Shahinpoor (1993) performed experimental comparisons between the swelling of 

polymer gels under the influence of an electric field and under the influence of a pH 

gradient. They suggested that there are two distinct mechanisms involved in the 

swelling of charged polymers. The first mechanism produced a quick response to an 

external electric field. The second one is much slower and also in response to an 

advancing pH gradient. They suggested that the short-time response is caused by the 

migration of the unbounded counter-ions, and it is predominantly responsible for the 

bending of polymer gels under the influence of an electric field. 

 

Li and Tanaka (1990) studied the swelling kinetics of polyacrylamide hydrogels with 

three different shapes: small disks, large disks and long cylinders. They found that the 

gel swelling and shrinking processes were not pure diffusion processes and the gel 

adjusted its shape in order to minimise the total shear energy. They also found that the 

apparent diffusion coefficient was smaller than the pure diffusion coefficient and that 

the observed apparent diffusion constant was time independent. Furthermore, they 

showed that the diffusion constant and relaxation time were geometry dependent. 

Horkay et al. (2000) studied the equilibrium swelling ratio of sodium polyacrylate 

gels immersed in different concentrations of alkali metal salts (Li
+
 and Na

+
) and 

alkaline earth metal salts (Ca
2+

 and Sr
2+

) and tried to relate these to the Flory theories 

(1953). They showed that monovalent counter-ions only had influence on the ionic 

contribution. Conversely, the divalent counter-ions affected both the ionic and mixing 

terms in the free energy. The elastic term was not significantly affected by both types 
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of ions. 

 

Along with these experimental works, theoretical research was carried out trying to 

find robust models that can predict the experimental results such as swelling rate and 

gel network movements. Early researches were mainly focus on equilibrium swelling 

models. In the 1940‘s Flory was the first to establish a theory predicting the 

equilibrium degree of swelling as a function of network characteristics and the 

interaction between solvent and network (Flory, 1969).  

 

Flory‘s theory for network swelling is based on the postulate that gel swelling can be 

seen as the mixing of a network with a solvent. The free energy change ΔGmix is 

composed of an enthalpic part ΔHmix and an entropic part ΔSmix: 

 ∆𝐺𝑚𝑖𝑥 = ∆𝐻𝑚𝑖𝑥−𝑇∆𝑆𝑚𝑖𝑥 (2.1.1)  

in which 

 ∆𝐻𝑚𝑖𝑥 = 𝑘𝑇𝜒𝑠𝑝𝑛𝑠𝜙𝑝

∆𝑆𝑚𝑖𝑥 = −𝑘[𝑛𝑠 ln(1 − 𝜙𝑝) + 𝑛𝑝 ln𝜙𝑝]
 (2.1.2)  

where k is the Boltzmann constant, T is the absolute temperature, χsp is the 

Flory-Huggins parameter for interactions between solvent and polymer network, ns 

and np are the number of solvent and polymer molecules respectively and ϕp is the 

final volume fraction of polymer network. ϕp is related to ns and np by: 

 
𝜙𝑝 =

𝑛𝑝𝑉̅𝑝

𝑛𝑠𝑉̅𝑠 + 𝑛𝑝𝑉̅𝑝
 (2.1.3)  

where 𝑉̅𝑠  and 𝑉̅𝑝 represent the molar volumes of solvent and polymer respectively.  

 

Entropy of mixing is always positive as can be seen in equation (2.1.2). The heat of 

mixing on the other hand may be positive or negative. The sum of both terms 

determines the sign of ΔGmix. In the particular case where ΔGmix=0 the system is at 

equilibrium. 
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The motion of chains in a network is limited because of the presence of crosslinks. 

When the network swells chains are extended between the network junctions causing 

an elastic force. This new configuration imposes an entropy change ΔSel. Assuming a 

Gaussian chain distribution and affine chain deformation during swelling the free 

energy change caused by chain stretching ΔGel was expressed by (Flory, 1969): 

 ∆𝐺𝑒𝑙 = −𝑇∆𝑆𝑒𝑙 =
𝑘𝑇𝜈𝑒
2
(3𝜆2 − 3 + ln 𝜆3) (2.1.4)  

with νe the effective number of chains in the network and λ an expansion factor 

relative to the reference state which is the relaxed unswollen state V0 in Flory‘s theory, 

λ3
=V/V0. 

 

The equilibrium degree of swelling can be defined by ΔGel minimal. Flory set the 

initial volume fraction of polymer to unity and the equilibrium degree of swelling was 

calculated as a function of system parameters by: 

 
𝑄𝑒𝑞
5/3
≅
𝑀𝑐𝜈

∗

𝑉̅𝑠
(
1

2
− 𝜒𝑠𝑝* (1 − 2

𝑀𝑐
𝑀
*
−1

 (2.1.5)  

with Mc the average molar weight between two junctions in a polymer chain, ν* the 

specific volume and M the molar weight of the mixture. Flory gave experimental 

results that confirmed his theory. 

 

In the case of polyelectrolyte systems, the total change in the free energy is the sum of 

the free energy of elastic deformation of the network, the free energy of mixing of the 

network chains and solvent molecules, and the mixing of the network chains with 

counter-ions. Hasa‘s swelling model (Hasa et al., 1975) included the electrostatic term 

of Katchalsky and Lifson (1953), a non-Gaussian elastic term (Smith et al., 1964), 

Flory-Huggins (Flory, 1953) polymer-solvent mixing and entropic solvent-ion mixing. 

The elastic term was a series expansion of the inverse Langevin function which is 

valid for small extensions (Hill, 1986). The swelling pressure was related to the 

osmotic pressure of the external solution to describe isotropic swelling. Non-ideal 

Donnan equilibrium was used to describe the ion concentrations. Vasheghani-Farahani 
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et al. (1990) used Hasa‘s model with experimental osmotic coefficients (Denbigh, 

1981) and obtained good predictions for the swelling of anionic and cationic 

acrylamide copolymer gels.  

 

More recently, Horkay et al. (2000) studied equilibrium swelling of hydrogels in 

different salt solutions. They calculated the total swelling pressure of the gel by 

adding up three terms. The first term was the swelling pressure of the gel network 

which was obtained from the theory of rubber elasticity (Flory, 1953). The second one 

was the mixing of network chains and solvent molecules expressed by Flory-Huggins 

equation. The third was the contribution of mixing of ions with solvent molecules and 

interactions between ions, polymer chains and solvent molecules, given by the 

Donnan theory.  

 

However, the gel swelling often involves the motion of the gel network. This is a 

dynamic process and a dynamic model is much more plausible. The equation of 

motion of a gel network in a static solvent was first introduced by Tanaka, Hocker and 

Benedek (1973) to describe the dynamics of thermal fluctuations of gel networks, 

which are responsible for the dynamic light scatting. The Tanaka-Hocker-Benedek 

model used linear elasticity and force balances to describe gel network movements.  

Later Tanaka and Fillmore (1979) developed a model in which the swelling process is 

described as a balance between a driving force and friction. The driving force is 

assumed to result from a uniform stress. Tanaka and Fillmore suggested this stress as 

an osmotic pressure. When the network was transferred into a fluid, this pressure 

forced the network to expand until the osmotic pressure difference between the gel 

and solution became zero. Komori and Sakamoto (1989) argued that the driving force 

for the swelling process was not caused by a stress that was latent in the network 

before it was contacted with the fluid because the unswollen network was 

mechanically stable in itself. Apart from this disagreement, the models were limited to 

two component systems: polymer network and solvent. 
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Gel swelling processes involve the diffusion of electrolyte solutions such as sodium 

hydroxide through the gel. Very often more than one single anion and one single 

cation are present and thus the modelling of such diffusion requires a multicomponent 

description. In the case of protein gel, the protein gel is charged and is thus an extra 

ionic component. Grimshaw et al. (1990) investigated a three component model for 

1D swelling of a polyelectrolyte membrane under an applied electric field. In this 

work a Nernst-Planck equation was used to model ion diffusion. De and Aluru (2004) 

also used this approach. However the Nernst-Planck equation is applicable for dilute 

solutions only. Thus a generalised method to describe multicomponent diffusion is 

needed such as the generalised Maxwell-Stefan diffusion approach. 

 

Bisschops et al. (1998) attempted to model the swelling of Dextran gels by using 

multicomponent diffusion approach. They aimed to demonstrate the potential of the 

generalised Maxwell-Stefan approach for describing the swelling kinetics of 

hydrogels. Although, this model only had two components it was still valuable 

because the model predicted the shrinking-core behaviour whereas other models 

based on Fickian diffusion did not. More recently Mercadé-Prieto and co-workers 

(Mercadé-Prieto et al., 2006; 2007) have considered cases where, in addition to 

charged βLg protein gel, at least three other ions are involved. However, little 

attention has been paid to the dynamic diffusion modelling of multi-ions from the 

bulk solution into the gel. 

 

Because of the mathematical difficulties of the coupling equations of ion diffusion 

and gel network movements, some researchers have tried to use numerical methods. 

The finite element method was commonly used. Achilleous et al. (2000; 2001) 

developed a transport model to explain the swelling of polyelectrolyte gels in salt 

solutions. The model offered a detailed finite element description of the chemical 

gradients in a gel under the influence of an electric field. Other numerical methods, 

such as Monte Carlo methods, were also used. Kekare et al. (2000) used a 

combination of discontinuous molecular dynamics and Monte Carlo techniques to 
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create a model that described the swelling of athermal gels in an athermal, monomeric 

solvent. The most remarkable contribution of this work was that it lacked the 

complexity of similar models developed using other numerical methods, but still 

provided good agreement with experimental results. This suggests that it is possible to 

develop a simple model that can describe the complex gel swelling. 

2.2  Diffusion theories: Fickian diffusion and Maxwell-Stefan 

diffusion  

Diffusion is a time-dependent process originated by the motion of given entities that 

are spread in space. The classical description of the diffusion process goes back to 

Fick. He postulated that the flux goes from high concentration regions to low 

concentration regions with a magnitude proportional to the concentration gradient. 

The direct proportionality between flux and concentration gradient provides a 

reasonable approximation of the diffusion process in many common situations. 

However, as experimentally observed, this postulate may be sometimes too simplistic. 

Indeed, there are some situations where the flux goes from regions of low 

concentration to regions of high concentration. This kind of behaviour has been 

observed, among other situations, in multicomponent gaseous mixtures (see Krishna 

and Wesselingh, 1997 for a physical review of this behaviour). The diffusion 

phenomenon in a multicomponent gaseous mixture was first accurately described by 

Maxwell (1867) and Stefan (1871). They suggested an explanation of the process 

based on the binary reciprocal interaction of gas molecules. The result of their 

analysis is a system of coupled and nonlinear partial differential equations, and the 

diffusion happens in a much more complex way than the one suggested by Fick. It 

was later called Maxwell-Stefan diffusion. This chapter will present Fickian diffusion 

theory and explain the physical derivation of the Maxwell-Stefan equations. 

 

To begin with, it is useful to introduce definitions of fluxes and diffusion fluxes and 

their relationships. 
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2.2.1  Fluxes 

Most of this section is based on Taylor and Krishna (1993). Consider a mixture with n 

components; let ui be the component velocity of component i of the mixture, defined 

with respect to a stationary coordinate reference frame. Then the mass flux of species 

i, ni in [kg/m
2
.s] is given by: 

 𝒏𝑖 = 𝜌𝑖𝒖𝑖 (2.2.1)  

where ρi is the concentration [kg/m
3
] of species i. In this thesis fluxes and velocities 

can be applied in up to three spatial dimensions. 

The total mass flux of the mixture, nt, follows from equation (2.2.1): 

 
𝒏𝑡 =∑𝒏𝑖

𝑛

𝑖=1

= 𝜌𝑡𝒗 (2.2.2)  

To derive the above equation we have used the definition that the mass flux is the 

product of the mixture density ρt and the mass average velocity of the mixture v. 

Therefore: 

 
𝜌𝑡𝒗 =∑𝜌𝑖𝒖𝑖

𝑛

𝑖=1

 (2.2.3)  

Dividing the above equation through by ρt, the mass average velocity is obtained: 

 
𝒗 =∑

𝜌𝑖
𝜌𝑡
𝒖𝑖

𝑛

𝑖=1

=∑𝑤𝑖𝒖𝑖

𝑛

𝑖=1

 (2.2.4)  

where 𝑤𝑖 =
𝜌𝑖
𝜌𝑡⁄  denotes the mass fraction of component i.  

 

The molar flux, Ni [mol/m
2
.s], of component i is defined by: 

 𝑵𝑖 = 𝑐𝑖𝒖𝑖 = 𝑐𝑡𝑥𝑖𝒖𝑖 (2.2.5)  

where ct is the total concentration in moles per volume and ci is the molar 

concentration of component i.  

 

The total molar flux, Nt, is the sum of the molar flux of all the components: 



 21 

 
𝑵𝑡 =∑𝑵𝑖

𝑛

𝑖=1

= 𝑐𝑡𝒖 (2.2.6)  

The molar average velocity u is defined in the same way as the mass average velocity: 

 
𝒖 =∑

𝑐𝑖
𝑐𝑡
𝒖𝑖

𝑛

𝑖=1

=∑𝑥𝑖𝒖𝑖

𝑛

𝑖=1

 (2.2.7)  

where 𝑥𝑖 =
𝑐𝑖
𝑐𝑡⁄  denotes the molar fraction of component i. 

 

The diffusion flux is normally based on the velocity difference between the individual 

velocities of components and the reference average velocity. Therefore, different 

definitions of the diffusion fluxes may be introduced depending on the way of the 

choice of the reference velocity. For example, if mass average velocity is chosen as 

the reference velocity the mass diffusion flux can be defined. On the other hand, the 

molar diffusion flux can be defined with respect to the molar average velocity. 

 

The mass diffusion flux of component i denoted by ji [kg/m
2
.s] is defined with respect 

to the mass average velocity: 

 𝒋𝒊 = 𝜌𝑖(𝒖𝑖 − 𝒗) (2.2.8)  

The mass flux can be related to the mass diffusion flux as: 

 𝒏𝑖 = 𝒋𝒊 + 𝜌𝑖𝒗 (2.2.9)  

Alternatively, the molar diffusion flux of component i denoted by Ji [mol/m
2
.s] is 

defined by: 

 𝑱𝑖 = 𝑐𝑖(𝒖𝑖 − 𝒖) (2.2.10)  

The molar flux, Ni, can be related to the molar diffusion flux, Ji, by 

 𝑵𝑖 = 𝑱𝑖 + 𝑐𝑖𝒖 (2.2.11)  

 

2.2.2  Fickian diffusion theory 

Back in 1855, Adolf Fick published his first work on mass transfer ―On Liquid 

Diffusion‖, where he showed the analogy between diffusion and heat conduction 
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(Fick, 1855). The result of his work is now the most commonly used diffusion theory 

referred as the Fick‘ law. It defines the connection between the concentration gradient 

and the diffusion flux, which is caused by the gradient. In this section the Fick‘s 

diffusion theory is presented mainly based on Taylor and Krishna (1993). 

 

The form of the Fick‘s law for binary mixtures is the following:  

 𝑱1 = −𝑐𝑡𝐷12∇𝑥1 (2.2.12)  

Here the gradient of mole fraction ∇x1 of the diffusing component 1 is the driving 

force for the diffusion process. D12 is the Fickian diffusion coefficient or diffusivity of 

component 1 in component 2. Diffusion mass transfer tends to distribute the ions and 

molecules evenly. Thus a component normally diffuses from high concentration 

regions to low concentration regions, which is indicated by the negative sign in the 

above equation.  

 

An analogous relation may also be written for component 2. 

 𝑱2 = −𝑐𝑡𝐷21∇𝑥2 (2.2.13)  

There is only one independent concentration gradient in a binary mixture. Also due to 

the conservation of the total flux in the volume, there is only one independent 

diffusion flux. As a result the Fick diffusion coefficient in a binary mixture is 

symmetric: 

 𝐷12 = 𝐷21 (2.2.14)  

Provided that the concentration gradient of one component is known, only one value 

of diffusion coefficient is required to estimate the diffusion flux. However, in 

industrial applications diffusion transfer mainly occurs in mixtures with more than 

two components. 

 

For the binary systems discussed above Fickian diffusion can be seen as a linear 

relationship between the independent flux J1 and driving force ∇x1. For a mixture of n 

components, n-1 independent diffusion fluxes exist. The linear relationship needs to 

be extended and generalised: 
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𝑱𝑖 = −𝑐𝑡∑𝐷𝑖𝑘∇𝑥𝑘

𝑛−1

𝑘=1

  𝑖 = 1, … , 𝑛 − 1 (2.2.15)  

The flux of component i now depends not only on its own concentration gradient but 

also on the concentration gradients of other components in the mixture. 

 

The matrix form of the above n-1 equations is more convenient to use: 

 (𝑱) = −𝑐𝑡[𝐷](∇𝑥) (2.2.16)  

where (J) represents a column matrix of independent molar diffusion fluxes and (∇x) 

represents a column matrix of independent composition gradients with n-1 elements.  

 

The diffusion flux of component n is not independent and normally can be evaluated 

by the relation: 

 
∑𝑱𝑘

𝑛

𝑘=1

= 0 (2.2.17)  

The matrix [D] of Fickian diffusion coefficients is a square matrix of dimension n-1. 

The diagonal diffusivity Dii connects the fluxes of a component with its own 

concentration gradient while non-diagonal diffusivities Dij connect the flux of this 

component with the concentration gradients of other components. The diffusion 

coefficients Dij in multicomponent mixtures are not binary properties, but are the 

result of complex interactions between all the species. Therefore the values of 

diffusivities Dij in a multicomponent mixture are not equal to the Dij in a binary 

mixture of the components i and j. This means matrix [D] is not symmetrical. 

 

Even when Fick‘s law is generalised, it does not easily deal with systems with 

non-idealities or driving forces other than concentration. Plenty of such examples can 

be found in Wesselingh and Krishna (2000). Therefore the Maxwell-Stefan diffusion 

theory is introduced. 
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2.2.3  Maxwell-Stefan diffusion theory 

The Maxwell-Stefan equation will be employed as the theoretical base for the 

diffusion model in this thesis. Thus, it is very important to understand the theory 

before using it. For that reason its derivation will be presented. Back in 1859, 

Maxwell published two works on diffusion, based upon the kinetic theory of gases. In 

1871 Stefan extended the theory, which is now known as the Maxwell-Stefan (MS) 

theory for transport phenomena. Later, it was generalised by Taylor and Krishna 

(1993). 

 

The general idea of the Maxwell-Stefan approach is to consider balance between 

driving forces and friction forces. Friction occurs between the diffusing components. 

A driving force can be represented as a gradient of a potential, which is the 

measurement for the deviation from equilibrium. Depending on the conditions of the 

mass transfer, many possible sets of driving forces may exist. Examples of possible 

driving forces are:  

 the gradient of the chemical potential of a species,  

 the pressure gradient,  

 the gradient of the electrical potential,  

 external forces, such as gravity, centrifugal, etc.  

The basic driving force is the chemical potential, which is related to the variation of 

the concentration in an ideal mixture, and to the gradient of the corresponding 

chemical potential in a non-ideal mixture. However, the Maxwell-Stefan formula 

allows straightforward inclusion of other effects into the driving force.  

It is straightforward to derive the Maxwell-Stefan diffusion in binary gas mixtures and 

then generalise it to a multicomponent system.  
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Considering a z-directional diffusion in an isothermal system, the force balance for 

the control volume is shown is Figure 2.2. 

 

Figure 2.2 A simple force balance on a control volume containing an ideal gas mixture 

 

The net force acting on the left-hand wall is the pressure force PA exerted by the 

molecules outside this box striking this imaginary surface. The force acting on the 

species 1 molecules alone is the partial pressure of species 1, p1=Px1, multiplied by 

the area A. 

Therefore, the net force, F, acting on component 1 in direction z is given by: 

 𝑁𝑒𝑡 𝑓𝑜𝑟𝑐𝑒 𝑎𝑐𝑡𝑖𝑛𝑔 𝑜𝑛 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 1 = 𝐴𝑝1|𝑧 − 𝐴𝑝1|𝑧+𝑑𝑧 (2.2.18)  

Dividing by the volume Adz: 

 𝑁𝑒𝑡 𝑓𝑜𝑟𝑐𝑒 𝑎𝑐𝑡𝑖𝑛𝑔 𝑜𝑛 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 1 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑣𝑜𝑙𝑢𝑚𝑒

=
𝑝1|𝑧 − 𝑝1|𝑧+𝑑𝑧

𝑑𝑧
 

(2.2.19)  

Taking the limit as dz tends to zero, we find net force acting on component 1 

molecules per unit volume to be 

 𝑁𝑒𝑡 𝑓𝑜𝑟𝑐𝑒 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑣𝑜𝑙𝑢𝑚𝑒 = lim
𝑑𝑧→0

𝑝1|𝑧 − 𝑝1|𝑧+𝑑𝑧
𝑑𝑧

= −
𝑑𝑝1
𝑑𝑧

 (2.2.20)  

This force is balanced by the frictional force between diffusing particles of the species 

as shown in Figure 2.3.  

𝑃𝐴|𝑧 𝑃𝐴|𝑧+𝑑𝑧 

Area: A 

z z+dz 
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Figure 2.3 Relative motions between species 1 and 2  

(Krishna and Wesselingh, 1997) 

 

We expect friction between the two gases to be proportional to the amounts of the two 

gases in the volume and to their velocity difference. The amounts are proportional to 

the partial pressures: 

 𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟𝑐𝑒 ∝ 𝑝1𝑝2(𝒖1 − 𝒖2) (2.2.21)  

Therefore: 

 −
𝑑𝑝1
𝑑𝑧

∝ 𝑝1𝑝2(𝒖1 − 𝒖2) (2.2.22)  

They are forces per unit volume. The force per mole is obtained by diving by its 

concentration. For an ideal gas mixture the concentration of component 1 is: 

 𝑐1 =
𝑝1
𝑅𝑇

 (2.2.23)  

This yields: 

 −
𝑅𝑇

𝑝1
(
𝑑𝑝1
𝑑𝑧
* ∝ 𝑅𝑇𝑝2(𝒖1 − 𝒖2) (2.2.24)  

The left-hand side is the driving force on gas 1: 

 −
𝑅𝑇

𝑝1
(
𝑑𝑝1
𝑑𝑧
* (2.2.25)  

The right-hand side is the friction force exerted by gas 2 on gas 1. Using 𝑥2 ∝ 𝑝2 we 

rewrite it as: 
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 𝜉12𝑥2(𝒖1 − 𝒖2) (2.2.26)  

in which 
12 

is the friction coefficient between the gas 1 and 2. 

The friction coefficient is related to the Maxwell-Stefan diffusion coefficient, Ð12, by: 

 𝜉12 =
𝑅𝑇

𝐷12
 (2.2.27)  

The driving force can be expressed in terms of the chemical potential gradient of 

species 1, at constant temperature and pressure in vector form: 

 −∇𝑇,𝑃𝜇1 = −
𝑑𝜇1
𝑑𝑧

 (2.2.28)  

By equating the expression for the driving force and the friction force we can write 

the Maxwell-Stefan (MS) equation for diffusion in a binary gas mixture:  

 −
𝑑𝜇1
𝑑𝑧

=
𝑅𝑇

𝐷12
𝑥2(𝒖1 − 𝒖2) (2.2.29)  

Multiplying both sides of equation (2.2.29) by 
𝑥1

𝑅𝑇
: 

 −
𝑥1
𝑅𝑇

𝑑𝜇1
𝑑𝑧

=
𝑥1
𝐷12

𝑥2(𝒖1 − 𝒖2) (2.2.30)  

Combined with equation 2.2.5: 

 −
𝑥1
𝑅𝑇
∇𝑇,𝑃𝜇1 =

𝑥2𝑵1 − 𝑥1𝑵2
𝑐𝑡𝐷12

 (2.2.31)  

This is the form of Maxwell-Stefan equations for binary gas mixtures. It has been 

derived on the basis of a binary ideal gas in one dimension; the extension to liquids, 

other phases and three dimensions is relatively simple. For multicomponent systems, 

the driving force on component 1 is identical to that in binary systems. However, the 

friction force is much more complicated. For component 1, interactions between 

species 1 and 3, 1 and 4, and so on up to species 1 and n must also be accounted for. 

All of these frictional interactions will have an effect on the rate of diffusion of 

component 1. That is: 

 −∇𝑇,𝑃𝜇1 =
𝑅𝑇

𝐷12
𝑥2(𝒖1 − 𝒖2) +

𝑅𝑇

𝐷13
𝑥3(𝒖1 − 𝒖3) + ⋯

+
𝑅𝑇

𝐷1𝑛
𝑥𝑛(𝒖1 − 𝒖𝑛) 

(2.2.32)  

For an arbitrary component i, the above equation is: 
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−∇𝑇,𝑃𝜇𝑖 =∑
𝑅𝑇

𝐷𝑖𝑗
𝑥𝑗(𝒖𝑖 − 𝒖𝑗)

𝑛

𝑗=1
𝑗≠𝑖

  𝑖 = 1,2, … , 𝑛 
(2.2.33)  

where 𝜇𝑖 = 𝜇𝑖
0 + 𝑅𝑇 ln(𝛾𝑖𝑥𝑖) with γi the activity coefficient of component i in the 

mixture on a mole fraction basis and μi
0
 the chemical potential of component i in 

reference state. 

Applying a similar procedure as above, we have: 

 

−
𝑥𝑖
𝑅𝑇
∇𝑇,𝑃𝜇𝑖 =∑

𝑥𝑗𝑵𝑖 − 𝑥𝑖𝑵𝑗

𝑐𝑡𝐷𝑖𝑗

𝑛

𝑗=1
𝑗≠𝑖

  𝑖 = 1,2, … , 𝑛 
(2.2.34)  

Define a quantity di: 

 𝒅𝑖 = −
𝑥𝑖
𝑅𝑇
∇𝑇,𝑃𝜇𝑖 (2.2.35)  

Equation (2.2.34) can be written in terms of di as: 

 

𝒅𝑖 =∑
𝑥𝑗𝑵𝑖 − 𝑥𝑖𝑵𝑗

𝑐𝑡𝐷𝑖𝑗

𝑛

𝑗=1
𝑗≠𝑖

  𝑖 = 1,2, … , 𝑛 
(2.2.36)  

For non-ideal fluids, di may be expressed in terms of the mole fraction gradients as 

follows: 

 
𝒅𝑖 = −

𝑥𝑖
𝑅𝑇
∇𝑇,𝑃𝜇𝑖 = −

𝑥𝑖
𝑅𝑇
∑
𝜕𝜇𝑖
𝜕𝑥𝑗
|
𝑇,𝑃,∑

∇𝑥𝑗

𝑛−1

𝑗=1

= −
𝑥𝑖
𝑅𝑇
∑𝑅𝑇

𝜕𝑙𝑛(𝛾𝑖𝑥𝑖)

𝜕𝑥𝑗
|
𝑇,𝑃,∑

∇𝑥𝑗

𝑛−1

𝑗=1

= −𝑥𝑖∑(
𝜕𝑙𝑛𝛾𝑖
𝜕𝑥𝑗

+
𝜕𝑙𝑛𝑥𝑖
𝜕𝑥𝑗

)|
𝑇,𝑃,∑

∇𝑥𝑗

𝑛−1

𝑗=1

= −∑(𝛿𝑖𝑗 + 𝑥𝑖
𝜕𝑙𝑛𝛾𝑖
𝜕𝑥𝑗

)|
𝑇,𝑃,∑

∇𝑥𝑗

𝑛−1

𝑗=1

= −∑𝛤𝑖𝑗∇𝑥𝑗

𝑛−1

𝑗=1

 

(2.2.37)  

where ij is the Kronecker delta which have value zero except when i=j, when it has 

value unity. 
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𝛤𝑖𝑗 = 𝛿𝑖𝑗 + 𝑥𝑖

𝜕𝑙𝑛𝛾𝑖
𝜕𝑥𝑗

|
𝑇,𝑃,∑

 (2.2.38)  

The symbol ∑ indicates that the differentiation of lnγi with respect to mole fraction xj 

is to be carried out while keeping the mole fraction of all the other species constant 

except the nth because the mole fraction of component n must satisfy the fact that the 

sum of xi is unity. 

 

It is possible that other effects such as electrical gradients and pressure drops may also 

have a significant effect on diffusion. Next we want to treat the driving force in a 

more general sense. We write the force acting per unit volume of the mixture as: 

 𝑐𝑡𝑅𝑇𝒅𝑖 = −𝑐𝑖∇𝑇,𝑃𝜇𝑖 (2.2.39)  

Under the action of external forces acting on component i, the conservation of linear 

momentum gives: 

 
−
1

𝜌𝑡
∇𝑃 +∑𝜔𝑖𝑭̃𝑖

𝑛

𝑖=1

=
𝑑𝒗

𝑑𝑡
+ ∇ ∙ 𝛔 (2.2.40)  

where 𝑭̃𝑖 represents the force acting per unit mass of component i, and σ is the stress 

tensor.  

In most chemical processes, mechanical equilibrium is achieved long before chemical 

equilibrium and that for a system at mechanical equilibrium, the right-hand side of the 

above equation is zero: 

 
−
1

𝜌𝑡
∇𝑃 +∑𝜔𝑖𝑭̃𝑖

𝑛

𝑖=1

= 0 (2.2.41)  

When the system is subject to external body forces the generalised driving force is 

redefines as: 

 𝑐𝑡𝑅𝑇𝒅𝑖 = −𝑐𝑖∇𝑇𝜇𝑖 + 𝜌𝑖𝑭̃𝑖 (2.2.42)  

Because the left side of equation (2.2.41) is equal to zero, it can be added to right side 

of the above equation without changing its value: 

 
𝑐𝑡𝑅𝑇𝒅𝑖 = −𝑐𝑖∇𝑇𝜇𝑖 + 𝜌𝑖𝑭̃𝑖 + 𝜌𝑖 .

1

𝜌𝑡
∇𝑃 −∑𝜔𝑗𝑭̃𝑗

𝑛

𝑗=1

/ (2.2.43)  

Expanding the chemical potential term to include the pressure gradients: 
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 ∇𝑇𝜇𝑖 = ∇𝑇,𝑃𝜇𝑖 + 𝑉̅𝑖∇𝑃 (2.2.44)  

in which 𝑉̅𝑖 is the partial molar volume of component i.  

Combining equation (2.2.42) with equation (2.2.43): 

 
𝑐𝑡𝑅𝑇𝒅𝑖 = −𝑐𝑖∇𝑇,𝑃𝜇𝑖 − 𝑐𝑖𝑉̅𝑖∇𝑃 + 𝜌𝑖𝑭̃𝑖 + 𝜌𝑖 .

1

𝜌𝑡
∇𝑃 −∑𝜔𝑗𝑭̃𝑗

𝑛

𝑗=1

/ (2.2.45)  

After some mathematical transformations, the final relation is obtained: 

 
𝑐𝑡𝑅𝑇𝒅𝑖 = −𝑐𝑖∇𝑇,𝑃𝜇𝑖 + (𝜔𝑖 − 𝑐𝑖𝑉̅𝑖)∇𝑃 + 𝜌𝑖 .𝑭̃𝑖 −∑𝜔𝑗𝑭̃𝑗

𝑛

𝑗=1

/ (2.2.46)  

Incorporating this di in equation (2.2.36), we have the generalised Maxwell-Stefan 

(GMS) equations: 

 
𝒅𝑖 = −

𝑥𝑖
𝑅𝑇
∇𝑇,𝑃𝜇𝑖 +

(𝜔𝑖 − 𝑐𝑖𝑉̅𝑖)

𝑐𝑡𝑅𝑇
∇𝑃 +

𝜌𝑖
𝑐𝑡𝑅𝑇

.𝑭̃𝑖 −∑𝜔𝑗𝑭̃𝑗

𝑛

𝑗=1

/

=∑
𝑥𝑗𝑵𝑖 − 𝑥𝑖𝑵𝑗

𝑐𝑡𝐷𝑖𝑗

𝑛

𝑗=1
𝑗≠𝑖

  𝑖 = 1,2, … , 𝑛 

(2.2.47)  

 

2.3  GMS in electrolyte systems 

The generalised driving force has been identified by equation (2.2.46). For electrolyte 

systems it is convenient to express it in terms of the external body force exerted per 

mole of component i; the corresponding equations are: 

 
𝑐𝑡𝑅𝑇𝒅𝑖 = −𝑐𝑖∇𝑇,𝑃𝜇𝑖 + (𝜔𝑖 − 𝑐𝑖𝑉̅𝑖)∇𝑃 + .𝑐𝑖𝑭𝑖 − 𝜔𝑖∑𝑐𝑗𝑭𝑗

𝑛

𝑗=1

/ (2.3.1)  

The quantity 𝑐𝑖𝑉̅𝑖 represents the volume fraction ϕi of component i. 

 

For isothermal transport in electrolyte systems, the body force Fi is the electrical force 

caused by the electrostatic potential gradient ∇φ 

 𝑭𝑖 = −𝑧𝑖𝔍∇𝜑 (2.3.2)  

where zi is the ionic charge of component i and 𝔍 is the Faraday constant. 



 31 

Equation (2.3.1) becomes: 

 
𝑐𝑡𝑅𝑇𝒅𝑖 = −𝑐𝑖∇𝑇,𝑃𝜇𝑖 + (𝜔𝑖 − 𝑐𝑖𝑉̅𝑖)∇𝑃 − .𝑐𝑖𝑧𝑖 − 𝜔𝑖∑𝑐𝑗𝑧𝑗

𝑛

𝑗=1

/𝔍∇𝜑 (2.3.3)  

The condition of electroneutrality is everywhere: 

 
∑𝑐𝑖𝑧𝑖

𝑛

𝑖=1

= 0 (2.3.4)  

Therefore, the generalised driving force in electrolyte systems simplifies to: 

 𝑐𝑡𝑅𝑇𝒅𝑖 = −𝑐𝑖∇𝑇,𝑃𝜇𝑖 + (𝜔𝑖 − 𝑐𝑖𝑉̅𝑖)∇𝑃 − 𝑐𝑖𝑧𝑖𝔍∇𝜑 (2.3.5)  

Thus, the generalised Maxwell-Stefan equation
 
can be written for each of the n 

components as: 

 
𝒅𝑖 = −

𝑥𝑖
𝑅𝑇
∇𝑇,𝑃𝜇𝑖 −

(𝑐𝑖𝑉̅𝑖 − 𝜔𝑖)

𝑐𝑡𝑅𝑇
∇𝑃 −

𝑥𝑖𝑧𝑖
𝑅𝑇

𝔍∇𝜑

=∑
𝑥𝑗𝑵𝑖 − 𝑥𝑖𝑵𝑗

𝑐𝑡𝐷𝑖𝑗

𝑛

𝑗=1
𝑗≠𝑖

  𝑖 = 1,2, … , 𝑛 

(2.3.6)  

An important property of the multicomponent Maxwell-Stefan diffusion coefficients 

is their symmetry.   

 𝐷𝑖𝑗 = 𝐷𝑗𝑖  (2.3.7)  

There is only one independent GMS diffusion coefficient for a pair of components. 

This significantly reduces the number of the independent diffusion coefficients for 

multicomponent mixtures: n×(n-1)/2 for an n-component mixture.   

 

Another important property of the GMS multicomponent diffusion coefficients 

applies to ideal gases. In ideal gases multicomponent Maxwell-Stefan diffusion 

coefficients are equal to the binary coefficients and are almost independent of the 

mixture composition. In liquids, the third party influence on interaction between two 

species contributes to the values of the diffusion coefficients. As a result, the GMS 

diffusivities in a multicomponent mixture are no longer equal to the binary diffusion 
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coefficients. 

It can be seen that the definition of the generalised driving force makes it possible to 

account for a variety of different conditions under which the mass transfer occurs. 

For non-ionic systems it is usual to use diffusion fluxes Ji with respect to a reference 

velocity. For diffusion in electrolyte systems the most commonly used reference 

velocity is the velocity un of the solvent. 

 𝑱𝑖
𝑛 = 𝑵𝑖 − 𝑐𝑖𝒖𝒏 (2.3.8)  

With this choice the flux of species n is zero: 

 𝑱𝑛
𝑛 = 0 (2.3.9)  

The GMS equations can be written in terms of these diffusion fluxes: 

 
𝒅𝑖 = −

𝑥𝑖
𝑅𝑇
∇𝑇,𝑃𝜇𝑖 −

(𝑐𝑖𝑉̅𝑖 − 𝜔𝑖)

𝑐𝑡𝑅𝑇
∇𝑃 −

𝑥𝑖𝑧𝑖
𝑅𝑇

𝔍∇𝜑

=∑
𝑥𝑗𝑱𝑖

𝑛 − 𝑥𝑖𝑱𝑗
𝑛

𝑐𝑡𝐷𝑖𝑗

𝑛

𝑗=1
𝑗≠𝑖

  𝑖 = 1,2, … , 𝑛 

(2.3.10)  

The next step is to rearrange these equations into a form which can be solved 

numerically. By applying standard linear algebra techniques, these equations can be 

worked into the following n-1 dimensional form: 

 1

𝑅𝑇
x ∙ ∇𝑇,𝑃μ +

(c ∙ V̅ − ω)

𝑐𝑡𝑅𝑇
∇𝑃 +

x ∙ z

𝑅𝑇
𝔍∇𝜑 = −

1

𝑐𝑡
B𝐉𝑛 (2.3.11)  

where B is a n-1 square matrix with elements 

 

𝐵𝑖𝑖 =∑
𝑥𝑘
𝐷𝑖𝑘

𝑛

𝑘≠𝑖
𝑘=1

   𝑖 = 1,2, … , 𝑛 − 1 (2.3.12)  

 𝐵𝑖𝑗 = −
𝑥𝑖
𝐷𝑖𝑗
   𝑖 ≠ 𝑗 = 1,2, … , 𝑛 − 1 (2.3.13)  

By applying the non-ideal equation (2.2.37), the first term in equation (2.3.11) can be 

written as 

 1

𝑅𝑇
x ∙ ∇𝑇,𝑃μ = Γ∇x (2.3.14)  
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Thus equation (2.3.11) can be written for n-1 components in matrix form as equation 

(2.3.15) which is a convenient form for solution 

 
Γ∇x +

(c ∙ V̅ − ω)

𝑐𝑡𝑅𝑇
∇𝑃 +

x ∙ z

𝑅𝑇
𝔍∇𝜑 = −

1

𝑐𝑡
B𝐉𝑛 (2.3.15)  

In the case of an ideal solution, the activity coefficients are unity and  is the identity 

matrix. 

 

In electrolyte systems, when individual ions are considered as components, the 

diffusion of one or more of the ions will result in a local electrical potential difference 

(diffusion potential) that will drag a counter ion in the same direction (Wesselingh and 

Krishna, 2000). When there is a single pair of ions, e.g., NaCl in water, there is no 

need to involve the electrical potential as both ions move together to maintain 

electroneutrality. However, diffusion potential is important when there are more than 

one species of either anion or cation. The difficulty here is that diffusion potential is 

not explicitly defined. 

 

It can be assumed that initially, at time t0, a system is electrically neutral everywhere 

 
∑𝑧𝑖𝑥𝑖(𝑡0)

𝑛

𝑖=1

= 0 (2.3.16)  

And to retain neutrality there must be no net current: 

 
∑𝑧𝑖𝑱𝑖

𝑛

𝑛

𝑖=1

= 0 (2.3.17)  

Krishna (1987)
 
showed that equations (2.3.15) and (2.3.17) can be combined to give 

an augmented matrix: 

 

[
−𝑐𝑡 (Γ∇x +

(c ∙ V̅ − ω)

𝑐𝑡𝑅𝑇
∇𝑃)

…………………………………
0

] = [
[B] ⋮ [c ∙ z]

⋯⋯⋯ ⋮ ⋯⋯⋯
[z] ⋮ 0

] [

[𝐉𝑛]
⋯⋯
𝔍

𝑅𝑇
∇𝜑
] (2.3.18)  

From which Ji
n
 and ∇φ could be determined. The profile of φ through a matrix can be 

determined by numerical integration of ∇φ with an external boundary condition of 

zero.  
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2.4  Thermodynamics 

One of the most important advantages by using GMS equation is to consider the 

system as a non-ideal solution. In the system containing electrolytes and gels, it is 

necessary to define the activity coefficients of all combinations: activity coefficients 

of ions, solvent and the gel. It is also important to consider the effect of polymer 

network on the activities. 

 

Firstly, it is important to know some thermodynamic basics. For an open system, 

when a chemical substance is added to or removed, the thermodynamic properties of 

the system are altered. These properties include the energy, enthalpy and free energy 

associated with each substance added. For a system with a given composition, one can 

construct a thermodynamic function from which all the thermodynamic properties can 

be calculated. Two well known such functions are the Gibbs free energy G and the 

Helmholtz free energy A. 

 

The Gibbs free energy function is useful if the pressure and the temperature of the 

system are defined. 

 
𝑑𝐺 = −𝑆𝑑𝑇 + 𝑉𝑑𝑃 +∑𝜇𝑖𝑑𝑛𝑖

𝑖

 (2.4.1)  

in which S is the entropy and ni denotes the number of moles of component i added to 

the phase. 

 

The Helmholtz free energy function is useful if the volume and temperature of the 

system are defined. 

 
𝑑𝐴 = −𝑆𝑑𝑇 − 𝑃𝑑𝑉 +∑𝜇𝑖𝑑𝑛𝑖

𝑖

 (2.4.2)  

For liquids at not too high pressures at constant temperatures, the pressure and volume 

terms in the above equations are unimportant. The Gibbs and Helmholtz free energies 

are then identical.   
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Recall in Section 2.2.3, we used the following chemical potential equation defined for 

equation (2.2.33): 

 𝜇𝑖 = 𝜇𝑖
0 + 𝑅𝑇 ln(𝛾𝑖𝑥𝑖) (2.4.3)  

in which μi
0
 is the chemical potential of component i in reference state and γi is 

actually the activity coefficient of component i on a mole fraction scale. 

 

It is more convenient in aqueous solution thermodynamics to describe the chemical 

potential of a species i in terms of its activity ai. 

 𝜇𝑖 = 𝜇𝑖
0 + 𝑅𝑇 ln(𝑎𝑖) (2.4.4)  

From the above equation one can see that the activity is a measure of the difference 

between the component‘s chemical potential at the state of interest and at its reference 

state. As the chemical potential of component i approaches the chemical potential at 

its reference state, the activity of component i reaches unity. 

 

The basic definition of the activity coefficient is given by Zemaitis et al. (1986). For 

aqueous solutions in which the composition of the solution is expressed in terms of 

molality, the chosen reference state is the ideal solution of unit molality at the system 

temperature and pressure. The activity coefficient on a molal scale is defined as: 

 
𝛾𝑖
𝑚 =

𝑎𝑖(𝑚)𝑚𝑖
0

𝑚𝑖
 (2.4.5)  

in which γi
m
 denotes the molal activity coefficient, ai(m) is the activity on molal basis 

and mi is the molal concentration of component i defined by: 

 𝑚𝑖 =
𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝑠𝑜𝑙𝑢𝑡𝑒 𝑖

𝑚𝑎𝑠𝑠 𝑜𝑓 𝑠𝑜𝑙𝑣𝑒𝑛𝑡 𝑖𝑛 𝑘𝑔
 (2.4.6)  

mi
0
 is the unity molality and for convenience it is omitted when writing equations with 

the understanding that the activity and the activity coefficient are dimensionless. 

 

The activity coefficient on a mole fraction scale is given by: 

 𝛾𝑖 =
𝑎𝑖(𝑥)

𝑥𝑖
 (2.4.7)  

This is the activity coefficient used in the Maxwell-Stefan diffusion non-ideality 
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calculation. 

The activity and activity coefficient of a component i have been defined. However, in 

electrolytes a solution always contains cations and anions and thus a mean or average 

activity coefficient 𝛾± is needed: 

 𝛾± = (𝛾+
𝜈++𝛾−

𝜈−)1/𝜈 (2.4.8)  

where γ+ and γ- are the activity coefficients of cations and anions respectively, 

𝜈 = 𝜈+ + 𝜈− is the stoichiometric number of moles of ions in one mole of salt. 

 

Most activity coefficient calculation models are based on molality but activity 

coefficients of interest are based on mole fraction. Therefore activity coefficients may 

be converted a molal basis to a mole fraction basis via the following relationships 

given by Robinson and Stokes (1959): 

 𝛾± = (1 +𝑀𝑠𝜈𝑚±)𝛾±
𝑚 (2.4.9)  

where Ms is the molar mass of the solvent in [kg/mol] and 𝑚±  is the molal 

concentration of the solute. 

2.4.1  Activity coefficients of the Debye-Hückel limiting law 

Knowing the basic concepts of activity and activity coefficients in solutions we first 

look at activities of aqueous solutions of single strong electrolytes. Strong electrolytes 

are fully dissociated in solution and this results in high mutual attraction between 

oppositely charged ions. Based on the assumption of each ion being surrounded by an 

ionic atmosphere consisting of ions of the opposite charge, the Debye-Hückel limiting 

law for electrolyte solutions was formulated by Debye and Hückel (1923). The 

Debye-Hückel limiting law describes the non-ideal behaviour caused by electrostatic 

forces in extremely dilute electrolyte solutions: 

 log10 𝛾±
𝑚 = −𝐴|𝑧+𝑧−|√𝐼 (2.4.10)  

in which z+ and z- are the charge number of cations and anions. 

Molal ionic strength I is defined by: 
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𝐼 =

1

2
∑𝑚𝑖𝑧𝑖

2

𝑖

 (2.4.11)  

The coefficient A is defined by: 

 

𝐴 =
1

2.303
(
𝑒

√𝜖𝑘𝑇
*
3

√
2𝜋𝜌0𝑁𝐴
1000

 (2.4.12)  

in which e is the charge on a proton, 𝜖 is the dielectric constant of water, k is the 

Boltzmann‘s constant, T is the absolute temperature, ρ0 is the solvent density in g/cm
3 

and NA is the Avogadro‘s number. The factor of 1000 in the equation is used for 

density unit conversion from g/cm
3
 to kg/m

3
. A is a constant that depends on the 

solvent (water). An experimental value for A is 0.509 mol
-1/2

 kg
1/2

. 

 

The Debye-Hückel limiting law provides an accurate representation of the limiting 

behaviour of the activity coefficients for very dilute solutions of ionic strength 0.001 

molal or less. Recognising this, Debye and Hückel added a correction term to the 

limiting law. This extended form of the Debye-Hückel limiting is expressed as: 

 
log10 𝛾±

𝑚 = −
𝐴|𝑧+𝑧−|√𝐼

1 + 𝛽𝑎√𝐼
 (2.4.13)  

where: 

 

𝛽 = √
8𝜋𝑒2𝜌0𝑁𝐴
1000𝜖𝑘𝑇

 (2.4.14)  

The distance a is assumed to be the same for all ions in the system. Problems arise as 

this parameter is not measurable, but by choosing values close to the hydrated radius, 

often in the range of 3.5 to 6.2 Å suggested by Robinson and Stokes (1959), 

reasonable results can be obtained. Güntelberg (Zemaitis et al., 1986) suggested that 

setting a standard value for 𝑎 = 3.04  so that the βa quantity becomes unity. The 

extended Debye-Hückel equation holds quite well up to an ionic strength of 0.1 molal. 

 

In the following figures, the mean activity coefficient of HCl in water calculated with 

the Debye-Hückel limiting law and the extended Debye-Hückel law are compared to 

experimental values. 
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Figure 2.4 Mean molal activity coefficient of dilute aqueous HCl at 25
o
C calculated by the 

Debye-Hückel limiting law and the extended Debye-Hückel law compared with experimental values of 

NBS (Zemaitis et al., 1986) 

    

 

Figure 2.5 Mean molal activity coefficient of aqueous HCl at 25 
o
C calculated by the Debye-Hückel 

limiting law and the extended Debye-Hückel law compared with experimental values of NBS (Zemaitis 

et al., 1986) 
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appears from Figure 2.4 and 2.5, however, the Debye-Hückel law is not suitable for 

describing the properties of real electrolyte solutions.  

2.4.2  Activity coefficients of Pitzer’s equations 

The unsuccessful prediction of ion activities by Debye and Hückel is caused by an 

approximation which omits all of the direct effects of short-range forces.  

Recall the Gibbs free energy G is: 

 
𝑑𝐺 = −𝑆𝑑𝑇 + 𝑉𝑑𝑃 +∑𝜇𝑖𝑑𝑛𝑖

𝑖

 (2.4.15)  

Recall certain basics relationships for solution thermodynamics in the molality 

system: 

 𝜇𝑖 = 𝜇𝑖
0 + 𝑅𝑇 ln 𝑎𝑖 (2.4.16)  

 

 𝑎𝑖 = 𝑚𝑖𝛾𝑖
𝑚 (2.4.17)  

For the solvent (water), the chemical potential, μw, is: 

 𝜇𝑤 = 𝜇𝑤
0 + 𝑅𝑇 ln 𝑎𝑤 (2.4.18)  

With the superscript 0 indicates the standard or the reference state and the subscript w 

indicates water. 

 

The water activity is commonly expressed by the osmotic coefficient ϕ: 

 𝜙 = −
1000

𝑀𝑤 ∑ 𝑣𝑖𝑚𝑖𝑖
ln 𝑎𝑤 (2.4.19)  

with Mw is the molar mass of water and vi is the stoichiometric number of moles of 

ions in one mole of electrolyte i. 

 

The change of the total Gibbs energy of mixing from its standard state is: 

 
∆𝑚𝑖𝑥𝐺 = 𝑛𝑤(𝜇𝑤 − 𝜇𝑤

0 ) +∑𝑛𝑖(𝜇𝑖 − 𝜇𝑖
0)

𝑖

= 𝑅𝑇(𝑛𝑤 ln 𝑎𝑤 +∑𝑛𝑖 ln 𝑎𝑖
𝑖

+ 

(2.4.20)  
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One can substitute equations (2.4.17) and (2.4.19) for the activities: 

 
∆𝑚𝑖𝑥𝐺 = 𝑅𝑇∑𝑛𝑖[−𝜙 + ln(𝑚𝑖𝛾𝑖

𝑚)]

𝑖

 (2.4.21)  

It is separated into two parts: one dependent on composition and a second part with 

terms of γi
m
 or (1-ϕ): 

 
∆𝑚𝑖𝑥𝐺 = 𝑅𝑇∑𝑛𝑖(ln𝑚𝑖 − 1)

𝑖

+ 𝑅𝑇∑𝑛𝑖[1 − 𝜙 + ln 𝛾𝑖
𝑚]

𝑖

 (2.4.22)  

This second part is called the excess Gibbs free energy: 

 
𝐺𝑒𝑥 = 𝑅𝑇∑𝑛𝑖[1 − 𝜙 + ln 𝛾𝑖

𝑚]

𝑖

 (2.4.23)  

If the excess Gibbs energy is written as suggested by Pitzer (1991): 

 𝐺𝑒𝑥

𝑊𝑤𝑅𝑇
= f(𝐼) +∑∑𝑚𝑖𝑚𝑗𝜆𝑖𝑗(𝐼)

𝑗𝑖

+∑∑∑𝑚𝑖𝑚𝑗𝑚𝑘𝜆
∗
𝑖𝑗𝑘

𝑘𝑗𝑖

+⋯ 

(2.4.24)  

where Ww is the mass of water and I is also the molal ionic strength. 

 

The first term includes the Debye-Hückel limiting law only depending on the ionic 

strength. The binary interaction parameter λij(I) represents the short-range interaction 

in the presence of water between ions i and j. It is dependent on the ionic strength. 

The triple interaction parameter λ*
ijk represents the short-range interaction between 

ions i, j and k.  

 

Using this excess Gibbs energy equation one can obtain the activity coefficient and 

osmotic coefficient by differentiation of 
𝐺𝑒𝑥

𝑊𝑤𝑅𝑇
 : 
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ln 𝛾𝑖
𝑚 =

𝜕 (
𝐺𝑒𝑥

𝑊𝑤𝑅𝑇
*

𝜕𝑚𝑖
|

𝑛𝑤

= (
𝑧𝑖
2

2
) f ′ + 2∑𝜆𝑖𝑗𝑚𝑗

𝑗

+
𝑧𝑖
2

2
∑∑𝜆𝑗𝑘

′ 𝑚𝑗𝑚𝑘
𝑘𝑗

+ 3∑∑𝜆𝑖𝑗𝑘
∗ 𝑚𝑗𝑚𝑘

𝑘𝑗

+⋯ 

(2.4.25)  

and 

 
𝜙 − 1 = (∑𝑚𝑖

𝑖

+

−1

0(𝐼f ′ − f) +∑∑(𝜆𝑖𝑗+𝐼𝜆𝑖𝑗
′ )𝑚𝑖𝑚𝑗

𝑗𝑖

+ 2∑∑∑𝜆∗𝑖𝑗𝑘𝑚𝑖𝑚𝑗𝑚𝑘
𝑘𝑗𝑖

+⋯1 

(2.4.26)  

The variables f
’
 and λ’ijk are the ionic strength derivatives of f and λ. The sums cover 

all ion species.  

 

The above two equations are the general equations of Pitzer‘s activity coefficients. 

For m molal pure electrolytes MX with vM positive ions of charge zM and vX negative 

ions of charge zX, the osmotic coefficient given by Pitzer is: 

 
𝜙 − 1 = |𝑧𝑀𝑧𝑋|f

𝛾 +𝑚(
2𝑣𝑀𝑣𝑋
𝑣

*𝐵𝑀𝑋
𝜙
+𝑚2 0

2(𝑣𝑀𝑣𝑋)
3
2

𝑣
1 𝐶𝑀𝑋

𝜙
 (2.4.27)  

with 

 𝑣 = 𝑣𝑀 + 𝑣𝑋 (2.4.28)  

Pitzer measured the osmotic coefficients of 1-1, 2-1 and 1-2 types of salt at 25
o
C and 

found that the best results were obtained for the forms: 

 
f𝜙 = −𝐴𝜙

𝐼1/2

1 + 𝑏𝐼1/2
 (2.4.29)  

 

 𝐵𝑀𝑋
𝜙
= 𝛽𝑀𝑋

(0) + 𝛽𝑀𝑋
(1)𝑒(−𝛼𝐼

1/2) (2.4.30)  

b with the value of 1.2 kg
1/2

.mol
-1/2

 and α with the value of 2.0 kg
1/2

.mol
-1/2

 gave the 

best fit with experiment results. Aϕ is the Debye-Hückel parameter in Pitzer‘s 
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equations: 

 

𝐴𝜙 =
1

3
(
𝑒

√𝐷𝑘𝑇
*
3

√
2𝜋𝜌0𝑁𝐴
1000

 (2.4.31)  

Compared the above equation with that defined in the Debye-Hückel limiting law the 

difference is the value 3 used in the equation instead of 2.303. The value of Aϕ is 

0.3915 kg
1/2

 mol
-1/2 

at 25
o
C. The parameter βMX

(0)
 and βMX

(1)
 are dependent on the salt 

MX.  

The mean activity coefficient for the salt MX is defined as: 

 
ln 𝛾±

𝑚 = |𝑧𝑀𝑧𝑋|f
𝛾 +𝑚(

2𝑣𝑀𝑣𝑋
𝑣

*𝐵𝑀𝑋
𝛾
+𝑚2 0

2(𝑣𝑀𝑣𝑋)
3
2

𝑣
1 𝐶𝑀𝑋

𝛾
 (2.4.32)  

With the following definitions: 

 
f𝛾 = −𝐴𝜙 *

𝐼1/2

1 + 𝑏𝐼1/2
+
2

𝑏
ln(1 + 𝑏1/2)+ (2.4.33)  

 

 𝐵𝑀𝑋
𝛾
= 𝐵𝑀𝑋 + 𝐵𝑀𝑋

𝜙
 (2.4.34)  

 

 
𝐶𝑀𝑋
𝛾
=
3𝐶𝑀𝑋

𝜙

2
 (2.4.35)  

BMX is defined by: 

 𝐵𝑀𝑋 = 𝛽𝑀𝑋
(0) + 𝛽𝑀𝑋

(1)g(𝛼1𝐼
1/2) + 𝛽𝑀𝑋

(2)g(𝛼2𝐼
1/2) (2.4.36)  

in which function g is: 

 g(𝑥) =
2[1 − (1 + 𝑥)𝑒𝑥𝑝(−𝑥)]

𝑥2
 (2.4.37)  

 

For mixed electrolytes, the Pitzer equations for the activity coefficient of a cation M 

(γM
m
), the activity coefficient of an anion X (γX

m
) and the osmotic coefficient ϕ, are as 

follows: 
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𝑙𝑛(𝛾𝑀

𝑚) = 𝑧𝑀
2 𝐹 +∑𝑚𝑎(2𝐵𝑀𝑎 + 𝑍𝐶𝑀𝑎)

𝑎

+∑𝑚𝑐 (2Φ𝑀𝑐 +∑𝑚𝑎𝜓𝑀𝑐𝑎
𝑎

+

𝑐

+∑∑𝑚𝑎𝑚𝑎,𝜓𝑀𝑎𝑎,

𝑎,𝑎

+ 𝑧𝑀∑∑𝑚𝑐𝑚𝑎𝐶𝑐𝑎
𝑎𝑐

 

(2.4.38)  

 

 
𝑙𝑛(𝛾𝑋

𝑚) = 𝑧𝑋
2𝐹 +∑𝑚𝑐(2𝐵𝑐𝑋 + 𝑍𝐶𝑐𝑋)

𝑐

+∑𝑚𝑎 (2Φ𝑋𝑎 +∑𝑚𝑐𝜓𝑐𝑋𝑎
𝑐

+

𝑎

+∑∑𝑚𝑐𝑚𝑐 ,𝜓𝑐𝑐 ,𝑋
𝑐 ,𝑐

+ |𝑧𝑋|∑∑𝑚𝑐𝑚𝑎𝐶𝑐𝑎
𝑎𝑐

 

(2.4.39)  

 

 

𝜙 − 1 =
2

∑ 𝑚𝑖𝑖
[
−𝐴𝜙𝐼

3
2

(1 + 𝑏𝐼
1
2*
+∑∑𝑚𝑐𝑚𝑎(𝐵𝑐𝑎

𝜙
+ 𝑍𝐶𝑐𝑎)

𝑎𝑐

+∑∑𝑚𝑐𝑚𝑐 , (Φ𝑐𝑐 ,
𝜙
+∑𝑚𝑎𝜓𝑐𝑐 ,𝑎

𝑎

+

𝑐 ,𝑐

+∑∑𝑚𝑎𝑚𝑎, (Φ𝑎𝑎,
𝜙
+∑𝑚𝑐𝜓𝑐𝑎𝑎,

𝑐

+

𝑎,𝑎

] 

(2.4.40)  

The summations in equations over c and a respectively are summations over the 

cations and the anions present in the solution. The various terms in equations are 

defined as follows: 

 
𝑍 =∑𝑚𝑖|𝑧𝑖|

𝑖

 (2.4.41)  
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𝐹 = 𝑓𝛾 +∑∑𝑚𝑐𝑚𝑎𝐵𝑐𝑎

,

𝑎𝑐

+∑∑𝑚𝑐𝑚𝑐 ,Φ𝑐𝑐 ,
,

𝑐 ,𝑐

+∑∑𝑚𝑎𝑚𝑎,Φ𝑎𝑎,
,

𝑎,𝑎

 

(2.4.42)  

 

 

𝐵𝑀𝑋
′ =

*𝛽𝑀𝑋
(1)g′(𝛼1𝐼

1/2) + 𝛽𝑀𝑋
(2)g′(𝛼2𝐼

1/2)+

𝐼
 (2.4.43)  

 

 

g′(𝑥) =
−2 [1 − (1 + 𝑥 +

𝑥2

2 * 𝑒
−𝑥]

𝑥2
 

(2.4.44)  

 

 
𝐶𝑀𝑋 =

𝐶𝜙

2|𝑧𝑀𝑧𝑋|1/2
 (2.4.45)  

 

 Φ𝑐𝑐 ,
𝜙
= Φ𝑐𝑐 , + 𝐼Φ𝑐𝑐 ,

,  (2.4.46)  

 

 Φ𝑎𝑎,
𝜙
= Φ𝑎𝑎, + 𝐼Φ𝑎𝑎,

,
 (2.4.47)  

In the analysis of experimental data for mixed electrolytes with the use of the 

equations of Pitzer, it was found that the principal effects on mixing electrolytes arise 

from differences in the pure electrolyte parameters β
(0)

,  β
(1)

,  β
(2)

 and Cϕ  and that 

the parameters Φ and ψ have only a small effect. So far a few parameters in Pitzer‘s 

equations above have not been found.  

 

For the solvent water, the activity of the pure water is unity. In dilute solutions of 

electrolytes, the activity is very close to unity. The water activity is found by 

rearranging equation (2.4.19): 

 ln 𝑎𝑤 = −
𝑀𝑤 ∑ 𝑣𝑖𝑚𝑖𝑖

1000
𝜙 (2.4.48)  
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Figure 2.6 Mean molal activity coefficient of aqueous NaCl at 25 
o
C calculated by the Debye-Hückel 

limiting law and the Pitzer‘s equation compared with experimental values of NBS (Zemaitis et al., 

1986) 

 

From the results in Figure 2.6, it can be concluded that the Pitzer model predicts the 

mean activity coefficients of single salts dissolved in water very well. For the 

prediction of the mean activity coefficients of an electrolyte in mixtures of 

electrolytes the Pitzer model can also be applied, which is illustrated in Figure 2.7 and 

Figure 2.8 for the NaCl and NaOH mixture. 

 
Figure 2.7 Mean molal activity coefficient of aqueous NaCl in NaCl and NaOH mixture calculated by 

the Pitzer‘s equation compared with experimental values (Falciola et al., 2003) 
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Figure 2.8 Mean molal activity coefficient of aqueous NaOH in NaCl and NaOH mixture calculated by 

the Pitzer‘s equation compared with experimental values (Falciola et al., 2003) 

 

The parameters used to calculate activity coefficients of NaCl and NaOH mixture are 

summarised in the following tables. For many systems the interaction parameters have 

been tabulated in Pitzer (1991). 

 

Table 2.1 interaction parameters β
(0)

,  β
(1)

,  β
(2)

 and Cϕ 

 β
(0)

 β
(1)

  β
(2)

 Cϕ 

Na
+
/Cl

-
 0.0765 0.2664 0 0.00127 

Na
+
/OH

-
 0.0864 0.253 0 0.0044 

 

Table 2.2 interaction parameter Φaa‘ and ψaa’c 

Φaa‘ (Cl
-
/OH

-
) -0.050 

ψaa’c (Na
+
/Cl

-
/OH

-
) -0.006 

2.4.3  Activity coefficients in polyelectrolytes: Manning’s condensation 

theory 

Polyelectrolytes become charged by dissociation of certain functional groups 

releasing ions into the surrounding solution. For example, proteins can be negatively 

charged by releasing hydrogen ions into the alkaline surrounding solution. For such a 

polyelectrolyte system, the system can be seen composed of small ions of electrolytes, 

polyions of the gel and solvent. The electrostatic interactions between polyions and 

small ions often exert a significant effect on polyelectrolyte‘s thermodynamic 
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properties. Extensive efforts have been made to develop theories and models for these 

systems. Among them the counter-ion condensation theory developed by Manning 

(Manning, 1969a, 1969b, 1979) is of interest. The Manning condensation model 

involves the following assumptions: 

 the real polyelectrolyte chain is considered as an infinite line charge with a 

uniform linear charge density, β; 

 the interactions between two or more polyions are neglected; 

 the dielectric constant, 𝜖, is assumed to be that of the pure bulk solvent; 

 for dilute solutions, a sufficient number of counter-ions will condense onto the 

polyion until the charged density between neighbouring monomer charges along 

the polyion chain is reduced below a certain critical value called 𝜉. 

 the mobile ions are treated by the Debye-Hückel approximation. 

If the end to end distance of the polyion chain in the state of maximum extension is L 

and the chain have nt charged groups of valence zp, the charge density β is given by: 

 𝛽 =
𝑧𝑝𝑒

𝑏
 (2.4.49)  

with 

 𝑏 =
𝐿

𝑛𝑡
 (2.4.50)  

The physical meaning of b is the average charge distance in the fully stretched 

configuration. From the assumption the real polyelectrolyte chain is replaced by an 

infinite line charge with density β given by equation (2.4.49). 

 

Ions, either condensed or mobile, are determined by an observation of Onsager 

(Manning, 1969a) about the configurational integral of the system. By ―condensed‖ 

the Manning theory assumes zero mobility. Consider the contribution to this integral 

from the region of phase space where the mobile ion zi is sufficiently close to the line 

charge (say, 𝑙 ≤ 𝑙0, where l is the distance from the line charge) to have an unscreened 

Coulomb interaction with it, and all the other ions are further from the line. The other 

ions contribute a finite factor f(l0) to the configurational integral and the entire 

contribution from this region is given by: 
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𝐴𝑖(𝑙0) = 𝑓(𝑙0)∫ exp (−

𝑢𝑖𝑝(𝑙)

𝑘𝑇
)2𝜋𝐿𝑑𝑙

𝑙0

0

 (2.4.51)  

in which Ai stands for the Onsager configurational integral. 

uip is the polyion-ion interaction obtained by: 

 𝑢𝑖𝑝 = −𝑧𝑖𝑒 (
2𝛽

𝜖
* ln 𝑙 (2.4.52)  

Thus 

 
𝐴𝑖(𝑙0) = 2𝜋𝑓(𝑙0)∫ 𝑙(1+2𝑧𝑖𝑧𝑝𝜉)𝑑𝑙

𝑙0

0

 (2.4.53)  

where the Manning parameter 𝜉 is defined as: 

 𝜉 =
𝑒2

𝜖𝑘𝑇𝑏
 (2.4.54)  

For a counter-ion i, zizp is negative, the integral in equation (2.4.53) diverges at the 

lower limit for all 𝜉 such that: 

 
𝜉 ≥

1

|𝑧𝑖𝑧𝑝|
 (2.4.55)  

Mobile ions and charged groups are treated as monovalent, so the condition becomes: 

 𝜉 ≥ 1 (2.4.56)  

The physical meaning of the divergence of the phase integral for values of 𝜉 greater 

than unity is that systems with 𝜉 greater than unity are unstable. Therefore many 

counter-ions will condense on the line charge to reduce the charge density parameter 𝜉 

to the value of unity. The uncondensed mobile ions are still subject to electrostatic 

interactions with the line charge since the charge density of the line after condensation 

is not zero. In other words if the value of 𝜉 is greater than unity, condensation will 

happen and after condensation it is equal to unity. If the value of 𝜉 is less than unity, 

no condensation will occur and all mobile ions are treated in the Debye-Hückel 

approximation. 

 

For the activity coefficients calculation with 𝜉 less than unity, because there is no 

condensation and all mobile ions are treated by the Debye-Hückel limiting law, the 

polyion can be seen as an additional ion component to the electrolyte system and 
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activity coefficients can be obtained by the Pitzer‘s equations. The problem here is to 

find the interaction parameters between electrolyte ions and the polyion. Therefore the 

activity coefficients are still calculated by using the Debye-Hückel approximation 

given by: 

 ln 𝑦𝑖 = −
1

2
𝜉𝑋(𝑋 + 2)−1  𝑖 = 𝑐𝑜𝑢𝑛𝑡𝑒𝑟, 𝑐𝑜;  𝜉 < 1 (2.4.57)  

with 

 𝑋 =
𝑛𝑒
𝑛𝑠

 (2.4.58)  

where yi is the Manning activity coefficient, ne is the equivalent concentration of 

polyions and ns is the salt concentration added to the polyelectrolytes solution. 

 

The osmotic pressure coefficient is given by: 

 𝜙 = 1 −
1

2
𝜉𝑋(𝑋 + 2)−1 (2.4.59)  

For 𝜉 larger than unity, a fraction of (1 − 𝜉−1) of counter-ions condenses on the 

polyion reducing its charge and rendering 𝜉=1. The rest of the counter-ions (a fraction 

of 𝜉-1
) may then be treated in the Debye-Hückel approximation. The activity 

coefficient of the counter-ion is: 

 

𝑦𝑐𝑜𝑢𝑛𝑡𝑒𝑟 =
(𝜉−1𝑋 + 1)

𝑋 + 1
exp .

−
1
2 𝜉

−1𝑋

𝜉−1𝑋 + 2
/   (2.4.60)  

The activity coefficient of the co-ion is: 

 

𝑦𝑐𝑜 = exp .
−
1
2 𝜉

−1𝑋

𝜉−1𝑋 + 2
/   (2.4.61)  

The osmotic coefficient is: 

 

𝜙 =
−
1
2 𝜉

−1𝑋 + 2

𝑋 + 2
  (2.4.62)  

Manning‘s condensation theory works well for very dilute solutions. Experimental 

validation had been carried out for the systems in which the polyelectrolyte and the 

added simple salt had a common counter ion, such as sodium polyvinylsulfonate 
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(NaPVS)/NaCl, potassium pyrophosphate (KPP)/KBr and sodium 

polystyrenesulfonate (NaPSS)/NaCl. Alexandrowicz (Manning, 1969a) published 

extensive data for the osmotic coefficient  and the mean activity coefficients γ± of the 

mobile ions. The system is sodium polymethacrylate (NaPMA) with various degrees 

of neutralisation and with added NaBr in a concentration range from 1.410
-3

 N to 

0.17 N. It was found that the theory was in excellent agreement with the value of 

experiments in the more dilute region. 

  

Figure 2.9 Comparison of Manning theory for the osmotic coefficient ϕ (solid lines) with experimental 

data from Alexandrowicz. (Manning, 1969a) 

 

In less dilute regions the Manning condensation theory did not perform well because 

the short range interactions between polyelectrolyte ion and counter-ions are ignored. 

Therefore, this theory may not necessarily be accurate in condensed polyelectrolyte 

solutions. For real polyelectrolyte solutions, how to incorporate short range 

interaction into Manning‘s condensation theory needs to be solved. 

 

Based on the Manning‘s condensation theory, Iwasa et al. (Iwasa and Kwak, 1977; 

Iwasa, et al., 1978) found that the higher order cluster terms due to the polyelectrolyte 

ion-small ion interaction indicated a considerable difference between the counter-ion 

and co-ion activity coefficients even at 𝜉=1, where no condensation takes place. Thus, 

a new limiting law was derived by taking into account a high-order cluster term in the 

excess free energy. If the high order term in the excess free energy was dropped it 

reduced to the Manning limiting law. 
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For 𝜉≤1, the activity coefficients are: 

 
𝑦𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = exp ,(−0.5 + 0.3906𝜉 (

𝑋

𝑋 + 2
− 1*) (

𝜉𝑋

𝑋 + 2
*-   (2.4.63)  

 

 
𝑦𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = exp ,(−0.5 + 0.3906𝜉 (

𝑋

𝑋 + 2
+ 1*) (

𝜉𝑋

𝑋 + 2
*-   (2.4.64)  

For 𝜉>1, the activity coefficients are: 

 
𝑦𝑐𝑜𝑢𝑛𝑡𝑒𝑟 =

(𝜉−1𝑋 + 1)

𝑋 + 1
exp {(

𝜉−1𝑋

𝜉−1𝑋 + 2
)(−0.5

+ 0.3906 (
𝜉−1𝑋

𝜉−1𝑋 + 2
− 1)+}   

(2.4.65)  

and 

 
𝑦𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = exp {(

𝜉−1𝑋

𝜉−1𝑋 + 2
)(−0.5 + 0.3906(

𝜉−1𝑋

𝜉−1𝑋 + 2
+ 1)+}   (2.4.66)  

 

Kowblansky et al. (1978) measured mean activity coefficients of chloride and sodium 

ions in aqueous mixtures of sodium chloride with sodium dextran sulfate solutions. 

For the experiments, 0.001, 0.005 and 0.01M sodium chloride concentrations were 

used. Their data show that Manning‘s and Iwasa‘s predicted results are identical for 

very low X values but diverge for X>2 with Iwasa‘s results giving more accurate 

prediction at higher NaCl concentrations (Figure 2.10). 
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Figure 2.10 y± against X for NaDS solutions containing NaCl experimental data from Kowblansky et al. 

(1978) 

 

When they compared experimental data with activity coefficients calculated by 

Manning‘s theory, Wells and Kwak (Wells, 1973; Kwak et al., 1975) found that 

experimental data should be corrected by activity coefficients in pure electrolytes. The 

correction procedure can be stated mathematically by: 

 
𝑦±
𝑐 = 

𝑦±
𝑒𝑥

𝑦±
0   (2.4.67)  

where 𝑦±
𝑐  is the activity coefficients calculated by Manning‘s theory 

    𝑦±
𝑒𝑥 is the activity coefficients observed by experiments 

       𝑦±
0   is the activity coefficient of added salts in pure electrolyte solutions 

Therefore, the mean ion activity coefficient of the simple salt can be calculated by the 

modified form of the Manning theory (Wells, 1973):  

 𝑦± = 𝑦±
𝑝.𝑚𝑦±

𝑚.𝑚  (2.4.68)  

In the above equation the first term in the right hand equation is Manning‘s 

contribution and the second term is the activity coefficient in pure electrolytes. 
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Similarly the osmotic coefficient is given by 

 𝜙 =  𝜙𝑝.𝑚 + 𝜙𝑚.𝑚 − 1 ≈ 𝜙𝑝.𝑚𝜙𝑚.𝑚  (2.4.69)  

Manning‘s activity coefficients are based on molar concentration while models of 

activity coefficients in pure electrolytes are calculated based on molality. Therefore it 

is necessary to keep the activity coefficients on the same basis. The conversion 

between the two activity coefficients can be achieved by using equation (2.4.9). 

2.5  Swelling mechanics 

2.5.1  Rubber elasticity 

The ability to swell is an important characteristic of a gel. Hydrogels are polymers 

with a three-dimensional network (De and Aluru, 2004) that can absorb or release 

water as a response to stimuli of various kinds to reach an equilibrium state. 

Polyelectrolyte gels are charged gels that can swell and shrink in a reversible way as a 

reaction to external stimuli such as chemical interactions pH, solvent and solutes. In 

this thesis, a model of polyelectrolyte gel swelling is to be established. To do this we 

must know how to describe the swelling mechanics. In numerical simulations or 

uniaxial and biaxial mechanical deformation tests, polymer gels are often modelled 

successfully using rubber elasticity theory at large strains and linear elasticity theory 

at small strains (Lin and Metters, 2008). This is also applicable to swelling which is a 

kind of deformation caused by diffusion. In this study, the rubber elasticity theory and 

linear elasticity theory will be examined and then the suitable one will be used to 

describe the mechanical structure equations in the swelling model. 

 

Firstly it is necessary to know two elastic deformation models in rubber elasticity 

theory: affine and phantom (Caykara et al., 2004). Under applied stress, the elastic 

behaviour of gels falls between two idealised limits. In the affine model, it is assumed 

that chain segments of the network deform independently and on a microscopic scale 

in the same way as the whole sample (macroscopic scale). The crosslinks are assumed 
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to be fixed in space at positions exactly defined by the specimen deformation ratio. 

However, in the phantom model, chains are considered immaterial or phantom and 

can freely cross each other. Figure 2.11 shows schematically the difference between 

the affine network model and the phantom network model. The points marked with an 

A indicate the position of the crosslinks assuming affine deformation.  

 

Figure 2.11 Affine network and phantom network (Allen et al., 1996) 

 

There are two approaches to the study of rubber elasticity. Firstly the statistical theory 

attempts to derive stress-strain relationships of rubber from some idealised model of 

its structure such as a Gaussian network (Treloar, 2005) when rubber is under 

extension. Thermodynamics is fundamental to the development of this theory as it 

postulates that the deformation is accompanied by a reduction of entropy but without 

change in internal energy. Secondly the phenomenological theory treats the problem 

from the point view of continuum mechanics. This theory is to construct a 

mathematical framework to describe rubbery behaviour without the reference to 

thermodynamics concepts. It can deal with large deformations while the statistical 

theory assumes that all deformations are small. The first approach, or the classical 

theory of elasticity, often assumes that all deformations are small. In 

phenomenological theory, this small deformation assumption is relaxed and the study 

of large elastic deformations is often called finite elasticity theory. 
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 Network theory of rubber elasticity 

The network theory of rubber elasticity is based on the concept that a vulcanised 

rubber is an assembly of long-chain molecules together to form an irregular 

three-dimensional network. Firstly, it is required to calculate the entropy of the 

network, and from this to derive the free energy or work of deformation. From the 

work of deformation corresponding to a given state of strain the associated stresses 

are then readily derived by the application of mechanics. The study of rubber 

networks began with the very early work of Kuhn (1936). Then, explicit forms of 

stress-strain relations were developed by Wall (1942a; 1942b), Flory and Rehner 

(1943), James and Guth (1943), and Treloar (1943). These later theories led to results 

which are substantially similar.   

 

The theories followed the assumption that the material is isotropic and incompressible.  

Kuhn, Wall and Flory assumed that the deformation is affine. 

 

In rubber elasticity most researchers are concerned with the case of a simple extension. 

This is defined by three principal extension ratios along three perpendicular axes. 

These extension ratios may be either greater than unity corresponding to a stretch, or 

less than unity, corresponding to a compression (Treloar, 2005). With the 

incompressible assumption, there is a relation between the three principal extension 

ratios: 

 𝜆1𝜆2𝜆3 = 1 (2.5.1)  

where λ1, λ2 and λ3 are the principle extension ratios. 

 

1. James-Guth network 

James-Guth (1943) network is also called phantom network. Its deformational free 

energy is: 
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𝐴𝑑 =

𝑁𝑘𝑇

2
*
〈𝑟𝑚〉

2

〈𝑟2〉0
(𝜆1
2 + 𝜆2

2 + 𝜆3
2) − 3+ (2.5.2)  

where Ad denotes the deformation free energy, and N is the number of crosslinked 

chains in a polymer network structure. λ1, λ2 and λ3 are the principle extension ratios, 

and 〈𝑟𝑚〉
2 is the mean chain displacement, which is proportional to the cube root of 

the unstretched volume at temperature T. k is the Boltzmann‘s constant. The quantity 

〈𝑟2〉0 is the mean-square unperturbed end-to-end displacement of the molecule. It is 

independent of material volume, V, and displacement, r. 

 

2. Kuhn, Wall and Flory network 

Others like Kuhn, Wall and Flory proposed for an affine network that the 

deformational free energy is: 

 
𝐴𝑑 =

𝑁𝑘𝑇

2
*
〈𝑟2〉𝑖
〈𝑟2〉0

(𝜆1
2 + 𝜆2

2 + 𝜆3
2) − 3+ − 𝑁𝑘𝑇 ln(𝜆1𝜆2𝜆3)

−
3

2
𝑁𝑘𝑇 ln

〈𝑟2〉𝑖
〈𝑟2〉0

 

(2.5.3)  

The quantity 〈𝑟2〉𝑖 is the mean-square displacement of the chains in the unstretched 

network and 〈𝑟2〉0 has the same meaning as that in the James-Guth network. 

 

Flory (1953) quickly modified the above equation by adding to it a free energy of 

crosslinking because he found it was valid only for a system of ‗restrained‘ but 

unconnected chains and not for a genuine network. He calculated the deformed free 

energy of the network as 

 
𝐴𝑑 =

𝑁𝑘𝑇

2
*
〈𝑟2〉𝑖
〈𝑟2〉0

(𝜆1
2 + 𝜆2

2 + 𝜆3
2) − 3+ −

1

2
𝑁𝑘𝑇 ln(𝜆1𝜆2𝜆3)

−
3

4
𝑁𝑘𝑇 ln

〈𝑟2〉𝑖
〈𝑟2〉0

 

(2.5.4)  

Smith (Allen et al., 1996) discussed the above deformation energy equations. Both 

equations (2.5.2) and (2.5.4) are proved to be wrong because they do not obey 

Edwards‘ principle that a network theory of elasticity must obey (Allen et al., 1996): 
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lim
𝜆1→1

(
𝜕𝐴𝑑
𝜕𝜆1

*
𝜆2,𝜆3

= 0 (2.5.5)  

It is obvious that equation (2.5.2) fails this test; and equation (2.5.4) yields 

 〈𝑟2〉𝑖
〈𝑟2〉0

−
1

2
= 0 (2.5.6)  

This is wrong; it is generally close to one and not to one-half. 

For equation (2.5.3), the Edwards condition yields: 

 〈𝑟2〉𝑖
〈𝑟2〉0

− 1 = 0 (2.5.7)  

and thus it is satisfied. 

The force along the displacement r is defined as: 

 𝒇 = (
𝜕𝐴𝑑
𝜕𝑟
*
𝑇,𝑉

 (2.5.8)  

From the James-Guth equation, the contractile force of uniaxial deformation along the 

x axis with λ1=λ is given by: 

 𝒇 = 𝑁𝑘𝑇
〈𝑟𝑚〉

2

〈𝑟2〉0
(𝜆 −

1

𝜆2
* (2.5.9)  

From Kuhn, Wall and Flory 

 𝒇 = 𝑁𝑘𝑇
〈𝑟2〉𝑖
〈𝑟2〉0

(𝜆 −
1

𝜆2
* (2.5.10)  

For a given crosslinking, the force predicted by Kuhn, Wall and Flory is about twice 

that of James-Guth. That means the contractile force of uniaxial deformation of affine 

model is about twice that of phantom model. However, the experimental force and 

deformation relation follows neither but is in the middle. 

 

In the mid-1970s researchers realised that elastomeric behaviour varied from the 

affine network at low deformations to the phantom model at large deformations.  

Then in 1975 Ronca and Allegra (Allen et al., 1996) put forth a new version of 

elasticity theory: 

 
𝐴𝑑 =

𝑁𝑘𝑇

8
*
〈𝑟2〉𝑖
〈𝑟2〉0

𝑓∗ − 2 +
6

𝜆1
2 + 𝜆2

2 + 𝜆3
2 ln(𝜆1

2 + 𝜆2
2 + 𝜆3

2)+ (𝜆1
2

+ 𝜆2
2 + 𝜆3

2) −
1

2
𝑁𝑘𝑇 ln(𝜆1𝜆2𝜆3) 

(2.5.11)  
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where f 
*
 is the junction functionality.   

Reconsider a uniaxial deformation of λ1=λ: 

 
𝐴𝑑 =

𝑁𝑘𝑇

8
*
〈𝑟2〉𝑖
〈𝑟2〉0

𝑓∗ − 2+ (𝜆2 +
2

𝜆
* +

3

4
𝑁𝑘𝑇 ln (𝜆2 +

2

𝜆
* (2.5.12)  

which gives 

 
𝒇 =

𝑁𝑘𝑇

4
*
〈𝑟2〉𝑖
〈𝑟2〉0

𝑓∗ − 2 +
6𝜆

𝜆3 + 2
+ (𝜆 −

1

𝜆2
* (2.5.13)  

At low deformation, λ1, equation (2.5.13) reduces to the affine network of equation 

(2.5.9); at large deformation, λ1, the phantom network of James-Guth is obtained.  

The deformational free energy of Ronca and Allegra smoothly transforms from that of 

the affine network at low deformations to that of the phantom network at large 

deformations, and the force behaves in accord with observed behaviour.   

 

Flory (1953) was the first to study the thermodynamics of rubber swelling. He 

described the Helmholtz free energy of a swelling rubber by:  

 
𝐴 =

1

2
𝑁𝑘𝑇 *3 (

𝑉

𝑉0
*
2/3

− 3 − ln (
𝑉

𝑉0
*+ (2.5.14)  

or in terms of the volume fraction of rubber in swollen network: 

 𝐴 =
1

2
𝑁𝑘𝑇[3𝜈2

−2/3
− 3 − ln(𝜈2

−1)] (2.5.15)  

in which  

V and V0 are the volume of the swollen rubber and the volume of the rubber at 

preparation respectively. 

ν2 is the volume fraction of rubber in swollen network 𝜈2 =
𝑉0

𝑉
. 

N is the number of crosslinked chains in a polymer network structure.   

Treloar (1975) provided an alternative formulation for the Helmholtz free energy 

change of deformation for a swollen rubber: 

 𝐴 =
1

2
𝑁𝑘𝑇[3𝜈2

−2/3
− 3] (2.5.16)  

Maurer and Prausnitz (1996) used the concept that the pressure difference between the 

gel and its surroundings is caused by the elastic properties of the network. This can be 
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written as: 

 𝑃𝑔𝑒𝑙 − 𝑃0 = (
𝜕𝐴

𝜕𝑉
*|
𝑇
 (2.5.17)  

in which Pgel is the pressure inside the gel and P0 is the pressure outside the gel. 

  

If the deformation free energy of equation (2.5.15) is used, an explicit description of 

pressure is given by: 

 𝑃𝑔𝑒𝑙 − 𝑃0 =
1

2
𝑁𝑘𝑇

𝜈2
𝑉0
[2𝜈2

−2/3
− 1] (2.5.18)  

 

 Phenomenological theory of rubber elasticity 

In phenomenological theory, it is assumed that a strain-energy function has always 

existed. A material which is isotropic and incompressible can be classified as 

rubber-like material. Based on these assumptions, many researchers have attempted to 

construct a strain-energy function which is not only accurate enough to represent the 

mechanical response of rubber-like material but also simple enough to be amenable to 

mathematical analysis. Treloar (1944) carried out a series of experiments to study the 

mechanical properties of vulcanised natural rubber in simple tension, pure shear and 

uniform equibiaxial tension. Consequently Treloar‘s data have been used as the basis 

for comparison with theories.   

 

The strain-energy function denoted by Φ and measured as energy per unit volume, 

depends only on the final states of strain through the principal extension ratios λ1, λ2 

and λ3. All strains are measured from the chosen ground state. The strain-energy 

function is usually written as a function of two independent invariants. Those 

commonly used are defined by: 

 𝐼1 = 𝜆1
2 + 𝜆2

2 + 𝜆3
2 (2.5.19)  

 

 𝐼2 = 𝜆2
2𝜆3
2 + 𝜆3

2𝜆1
2 + 𝜆1

2𝜆2
2 = 𝜆1

−2 + 𝜆2
−2 + 𝜆3

−2 (2.5.20)  

From the strain-energy function the principal Cauchy stresses σ1, σ2 and σ3 are 

obtained: 
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 𝜍𝑖 = 𝜆𝑖
𝜕Φ

𝜕𝜆𝑖
− 𝑝    𝑖 = 1,2,3 (2.5.21)  

where p is an arbitrary hydrostatic pressure introduced because of the 

incompressibility constraint.   

 

Therefore the question is to construct an appropriate equation to describe the 

strain-energy relation. During the past years, different forms of strain-energy 

functions were introduced. Among them, Mooney, Rivlin, neo-Hookean, and more 

recently Ogden are the most popular ones. 

   

1. Mooney‘s formulation 

The first phenomenological theory of large elastic deformations was developed by 

Mooney (1940) and the strain-energy formulation is: 

 Φ = 𝐶1(𝜆1
2 + 𝜆2

2 + 𝜆3
2 − 3) + 𝐶2(𝜆1

−2 + 𝜆2
−2 + 𝜆3

−2 − 3)

= 𝐶1(𝐼1 − 3) + 𝐶2(𝐼2 − 3) 
(2.5.22)  

in which C1, C2 are two elastic constants. 

 

2. Rivlin‘s formulation 

Rivlin (1948) suggested that the strain-energy function may be expressed as an 

infinite series in terms of I1 and I2: 

 
Φ = ∑ 𝐶𝑚𝑛(𝐼1 − 3)

𝑚(𝐼2 − 3)
𝑛

∞

𝑚,𝑛=0

  𝐶00 = 0 (2.5.23)  

where Cmns are elastic constants.   

From mathematical simplicity one might reasonably expect that the first two terms 

would predominate, i.e. 

 Φ = 𝐶10(𝐼1 − 3) + 𝐶01(𝐼2 − 3) (2.5.24)  

Compared with equation (2.5.24) and (2.5.22), it is clear that the Mooney equation is 

a special case of Rivilin‘s equation. 

   

3. Neo-Hookean‘s formulation 
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Treloar (1943) formulated the neo-Hookean form of the strain energy function: 

 Φ =
1

2
𝐺𝑒𝑙(𝐼1 − 3) (2.5.25)  

in which Gel is the shear modulus in the unstrained state in Pa.   

Also, this is a special case of Rivlin‘s formulation equivalent to the first term of 

equation (2.5.24). 

  

4. Ogden‘s formulation 

More recently, Ogden (1972) proposed an alternative strain-energy function: 

 
Φ =∑

𝐺𝑒𝑙𝑟
𝛼𝑟
(𝜆1
𝛼𝑟 + 𝜆2

𝛼𝑟 + 𝜆3
𝛼𝑟 − 3)

𝑛

𝑟=1

 (2.5.26)  

In the Ogden formulation, the indices αr need not be integers.   

If n=1, α1=2 equation (2.5.26) becomes: 

 

 Φ =
1

2
𝐺𝑒𝑙(𝐼1 − 3) (2.5.27)  

It is the neo-Hookean‘s model.   

If n=2, α1=2 and α2=-2: 

 Φ =
𝐺𝑒𝑙1
2
(𝐼1 − 3) +

𝐺𝑒𝑙2
−2

(𝐼2 − 3) (2.5.28)  

which gives the Mooney model if Gel1 = 2C1 and Gel2 = –2C2. 

Using the stress-strain data reported by Treloar (1944a), Ogden obtained a material 

model with the coefficients 

 𝛼1 = 1.3  𝛼2 = 5.0  𝛼3 = −2.0 (2.5.29)  

and 

 𝐺𝑒𝑙1 = 0.618  𝐺𝑒𝑙2 = 0.00118  𝐺𝑒𝑙3 = −0.00981  MPa (2.5.30)  

It was found that for simple extension and pure shear a two-term formula was 

effective, but for the representation of all three types of strain three terms were 

required. The agreement with the Treloar‘s data was very satisfactory. 

 

Ogden (1972) considered the inflation of a circular membrane into a spherical shape 

by using a phenomenological description. He suggested that equibiaxial tension can 
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be used to effectively describe the stress field in the region of the pole of a spheroid 

provided the skin thickness is very much less than the radius of curvature at the pole. 

In equibiaxial tension, let h be the thickness of undeformed skin and Ttension be the 

surface tension acting on a section of unit length of the sheet. In the deformed state 

 𝑻𝑡𝑒𝑛𝑠𝑖𝑜𝑛
𝑕

= 𝐺𝑒𝑙𝑟[𝜆
𝛼𝑟−2 − 𝜆−(2+2𝛼𝑟)] (2.5.31)  

The pressure of inflation P can approximately be related to the surface tension Ttension 

by: 

 𝑃 = 2
𝑻𝑡𝑒𝑛𝑠𝑖𝑜𝑛
𝑟

 (2.5.32)  

In a thin rubber balloon, the undeformed thickness of the skin is h and the 

incompressibility assumption implies that the actual volume, V, of the rubber material 

remains constant during inflation. Let r be the radius when the pressure is P. When λ 

is the extension ratio in the surface of the balloon the thickness is hλ-2
. Therefore in 

the strained state the volume of the balloon membrane is approximately: 

 𝑉 = 4𝜋𝑟2𝑕𝜆−2 (2.5.33)  

Thus 

 

𝑟0 =
𝑟

𝜆
= (

𝑉

4𝜋𝑕
*

1
2
 (2.5.34)  

where r0 is the radius of the balloon in its initial state.   

 

The general form of the pressure-extension ratio relation for the inflation of a 

spherical membrane is (Hart-Smith, 1966): 

 

𝑃 =
4𝑕

𝑟0

𝜕Φ

𝜕𝐼1
(
1

𝜆
−
1

𝜆7
*(1 + 𝜆2

𝜕Φ
𝜕𝐼2
𝜕Φ
𝜕𝐼1

, (2.5.35)  

And by equation (2.5.31), (2.5.32) and (2.5.34) the Ogden‘s pressure in the balloon 

undergoing inflation gives: 

 𝑃𝑟0
2𝑕

= 𝐺𝑒𝑙𝑟[𝜆
𝛼𝑟−3 − 𝜆−(2𝛼𝑟+3)] (2.5.36)  

With the particular values of the r and Gelr given by equation (2.5.29) and (2.5.30) 

which are related specifically to the rubber of Treloar‘s experiments, a good 
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prediction of pressure inside the balloon can be obtained.   

 

Another form of inflation pressure in terms of Mooney formulation of strain energy 

was given by Green and Adkins (1960): 

 𝑃𝑟0
8𝑕

= (𝐶1 + 𝜆
2𝐶2)

1

𝜆
(1 −

1

𝜆6
* (2.5.37)  

 

 Compare free energy function with strain energy function 

In a reversible isothermal process the change in Helmholtz free energy is equal to the 

work done on the system by the applied force (Treloar, 2005).  

 𝑑𝐴 = 𝑑𝑊 (2.5.38)  

W represents the work of deformation. The work of deformation per unit volume also 

called the elastically stored free energy per unit volume of the rubber can be referred 

to as the strain energy function by Φ in J/m
3
. 

 

The Treloar and Flory free energy function of incompressible rubber can be written 

as: 

 𝐴 =
𝑁𝑘𝑇

2
[(𝜆1

2 + 𝜆2
2 + 𝜆3

2) − 3] (2.5.39)  

Or it can be written in terms of free energy per unit volume as: 

 𝐴𝑉 =
𝑁𝑉𝑘𝑇

2
[(𝜆1

2 + 𝜆2
2 + 𝜆3

2) − 3] =
𝑁𝑉𝑘𝑇

2
[𝐼1 − 3] (2.5.40)  

where AV is the free energy function per unit volume in J/m
3
 and consequently NV is 

the number of crosslinks per unit volume in 1/m
3
.   

 

Compared with equation (2.5.22), it is clear that the first term in equation (2.5.22) 

corresponds identically to the form derived from network theory with 

 2𝐶1 = 𝑁𝑉𝑘𝑇 (2.5.41)  

The network theory is thus the particular case of the Mooney theory with C2=0.   

The right hand side of the above equation is actually the shear modulus (Treloar, 

2005): 
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 𝐺𝑒𝑙 = 𝑁𝑉𝑘𝑇 (2.5.42)  

This gives: 

 𝐶1 =
𝑁𝑉𝑘𝑇

2
=
1

2
𝐺𝑒𝑙 (2.5.43)  

It is consistent with equation (2.5.25).   

NV can be written in terms of Avogadro‘s number (NA) and molar density (cρ): 

 𝑁𝑉 = 𝑐𝜌𝑁𝐴 (2.5.44)  

Then 

 𝐺𝑒𝑙 = 𝑐𝜌𝑁𝐴𝑘𝑇 (2.5.45)  

which is: 

 𝐺𝑒𝑙 = 𝑐𝜌𝑅𝑇 (2.5.46)  

If it is expressed in terms of the number average chain molecular weight Mc then the 

relationship is: 

 𝐺𝑒𝑙 = 𝑐𝜌𝑅𝑇 =
𝜌𝑅𝑇

𝑀𝑐
 (2.5.47)  

Here ρ is the density of the rubber (kg/m
3
) and R is the gas constant (8.314 JK

-1
mol

-1
).   

Therefore, these two approaches to the study of rubber elasticity are actually related to 

each other in some way via comparison. By adjusting the elastic constants in strain 

energy functions of phenomenological theory, deformation free energy of network 

theory can be obtained. Pressure in a swollen membrane can also be calculated from 

those two theories. The following is the list of the pressure equations calculated by 

using different energy functions: 

 𝑃𝐾𝑢𝑕𝑛−𝑊𝑎𝑙𝑙−𝐹𝑙𝑜𝑟𝑦 = 𝑁𝑉𝑘𝑇𝜈2[𝜈2
−2/3

− 1] (2.5.48)  

 

 𝑃𝑇𝑟𝑒𝑙𝑜𝑎𝑟 = 𝑁𝑉𝑘𝑇𝜈2
1/3

 (2.5.49)  

 

 
𝑃𝑂𝑔𝑑𝑒𝑛 = 𝐺𝑒𝑙𝑟 *𝜈2

−
1
3
(𝛼𝑟−3)

− 𝜈2

1
3
(2𝛼𝑟+3)

+ (2.5.50)  
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𝑃𝑀𝑜𝑜𝑛𝑒𝑦 = 𝐶1 (𝜈2

1
3 − 𝜈2

7
3)(1 +

𝐶2
𝐶1
𝜈2
−
2
3) (2.5.51)  

Figure 2.12 shows the comparison between different pressure models described by the 

above equations. 

 

Figure 2.12 Different pressure models of a swollen rubber membrane with parameters: 

NvkT=3.9×10
5
Pa; C1=1.95×10

5
Pa, C2=0; Gelr and αr given by equations (2.5.29) and (2.5.30) 

 

It is found that all the models give zero pressure at initial state except Treloar which 

gives its highest value at initial state. Kuhn-Wall-Flory and Mooney models show that 

the pressure quickly increases to a peek and then starts to decrease. The Ogden model 

is the only one that shows a slowly increase following the pressure decrease. 

Hart-Smith (1966) measured the pressure and volume of a balloon during inflation 

and found that after dropping to lower values the inflating pressure started to rise at 

very large deformations (Figure 2.13). 
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Figure 2.13 Experiment results for the repeated inflation of a spherical balloon (Hart-Smith, 1966) 

 

Compared with Figure 2.12 and Figure 2.13, it can be seen that although the Ogden 

model shows a pressure increase after the pressure decrease this increase is much 

smaller than the experiment findings. For instance, at λ=7 the pressure of the balloon 

is higher than the peak value at λ=1.5 as shown in Figure 2.13. However, the Ogden 

pressure is only about the half of its peak value as shown in Figure 2.12. 

2.5.2  Mechanical structure equations 

Another way to describe swelling mechanics is to use the classic linear elasticity 

theory, the Hooke‘s law. Tanaka and Fillmore (1979) used the linear elasticity theory 

to model the swelling of polyacrylamide spheres in water and De and Aluru (2004) 

used it to model the swelling of pH-sensitive hydrogel. 

 

It is assumed that the polyelectrolyte gel material obeys linear elasticity relationships 

and the elasticity of the gel is uniform and time invariant. The gravitational and 

frictional forces experienced by the gel are assumed to be negligible. The mechanical 

module takes as its input a force vector and returns a nodal displacement vector as 

output. Hence it is necessary to derive a governing equation to describe the motion of 
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an elastic body under the influence of an external force. 

From the fundamental definitions of elasticity, the engineering strain is defined in 

terms of displacements by the equation: 

 𝜀𝑖 =
∆𝐿

𝐿0
 (2.5.52)  

where the change in length ΔL is taken in the i
th

 direction and L0 is the initial 

longitudinal length of the element. 

 

From equation (2.5.52) for a given displacement of ux and uy in the x- and y-directions, 

the two-dimensional strain vector can be written as: 

 

[

𝜀𝑥
𝜀𝑦
𝜀𝑥𝑦
] =

[
 
 
 
 
 
 

𝜕𝑢𝑥
𝜕𝑥
𝜕𝑢𝑦

𝜕𝑦

𝜕𝑢𝑥
𝜕𝑦

+
𝜕𝑢𝑦

𝜕𝑥 ]
 
 
 
 
 
 

 (2.5.53)  

in which εx and εy are the strains in the x and y directions and εxy is the engineering 

shear strain. 

 

For the simplification of plane stress in an isotropic material, where the stresses in the 

z direction are considered to be negligible,𝜍𝑧𝑥 = 𝜍𝑧𝑦 = 𝜍𝑧𝑧 = 0 , the strains in 

equation (2.5.53) are related to their 2-dimensional stresses via Hooke‘s law: 

 𝜍𝑥𝑥 =
𝐸

1 − 𝜈2
[𝜀𝑥 + 𝜈𝜀𝑦] (2.5.54)  

 

 𝜍𝑦𝑦 =
𝐸

1 − 𝜈2
[𝜀𝑦 + 𝜈𝜀𝑥] (2.5.55)  

 

 𝜍𝑥𝑦 = 𝜍𝑦𝑥 = 𝐺𝜀𝑥𝑦 (2.5.56)  

The shear modulus G is related to the Young‘s modulus E and the Poisson‘s ratio ν 

via: 

 𝐺 =
𝐸

2(1 + 𝜈)
 (2.5.57)  

For the case of plane strain, where the strains in the z direction are considered to be 
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negligible, 𝜀𝑧𝑧 = 𝜀𝑦𝑧 = 𝜀𝑥𝑧 = 0, the stress-strain relationships are: 

 𝜍𝑥𝑥 =
𝐸

(1 + 𝜈)(1 − 2𝜈)
[(1 − 𝜈)𝜀𝑥 + 𝜈𝜀𝑦] (2.5.58)  

 

 𝜍𝑦𝑦 =
𝐸

(1 + 𝜈)(1 − 2𝜈)
[(1 − 𝜈)𝜀𝑦 + 𝜈𝜀𝑥] (2.5.59)  

 

 𝜍𝑥𝑦 = 𝜍𝑦𝑥 = 𝐺𝜀𝑥𝑦 (2.5.60)  

The equation of the gel network motion is given by:  

 𝜌
𝜕2𝐮

𝜕𝑡2
+ 𝑓

𝜕𝐮

𝜕𝑡
= ∇ ∙ 𝛔 + 𝜌𝐛 (2.5.61)  

where ρ is the effective density of the gel, u is the displacement vector of the network, 

f is the friction coefficient between the network and the solvent, and b is body forces. 

The stress tensor σ of a 2-dimensional system can be plane stress or plane strain 

described by equation (2.5.54) to (2.5.56) or equation (2.5.58) to (2.5.60) respectively. 

 

There are no body forces and the friction is assumed to be negligible, thus equation 

(2.5.61) becomes: 

 
𝜌
𝜕2𝐮

𝜕𝑡2
= ∇ ∙ 𝛔 (2.5.62)  

If the inertial terms are not dominant, then the equation of gel motion becomes: 

 ∇ ∙ 𝛔 = 0 (2.5.63)  

Considering the case of thermal expansion, the thermally induced strains can be 

superimposed to those induced by stresses. In terms of strains, the equations of plane 

stress are: 

 𝜍𝑥𝑥 =
𝐸

1 − 𝜈2
[𝜀𝑥 + 𝜈𝜀𝑦] −

𝐸𝛼𝑇𝑇

1 − 𝜈
 (2.5.64)  

 

 𝜍𝑦𝑦 =
𝐸

1 − 𝜈2
[𝜀𝑦 + 𝜈𝜀𝑥] −

𝐸𝛼𝑇𝑇

1 − 𝜈
 (2.5.65)  

 

 𝜍𝑥𝑦 = 𝜍𝑦𝑥 = 𝐺𝜀𝑥𝑦 (2.5.66)  

where αT is the thermal expansion parameter. 
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By analogy, the stresses in the motion equation include two parts. One is the stress of 

the polymer network described by Hooke‘s law and the other is the stress transmitted 

by the solvent pressure P. 

 𝜍𝑖𝑗
𝑡𝑜𝑡 = 𝜍𝑖𝑗 − 𝑃𝛿𝑖𝑗 (2.5.67)  

This idea was used by De and Aluru (2004). They used the osmotic pressure to 

describe the pressure difference between the gel and outside solution and for a plane 

strain problem, the stresses are given by: 

 𝜍𝑥𝑥 =
𝐸

(1 + 𝜈)(1 − 2𝜈)
[(1 − 𝜈)𝜀𝑥 + 𝜈𝜀𝑦] − 𝑃𝑜𝑠𝑚𝑜𝑡𝑖𝑐 (2.5.68)  

 

 𝜍𝑦𝑦 =
𝐸

(1 + 𝜈)(1 − 2𝜈)
[(1 − 𝜈)𝜀𝑦 + 𝜈𝜀𝑥] − 𝑃𝑜𝑠𝑚𝑜𝑡𝑖𝑐 (2.5.69)  

And 

 𝜍𝑥𝑦 = 𝜍𝑦𝑥 = 𝐺𝜀𝑥𝑦 (2.5.70)  

However it is questionable that the osmotic pressure can be used in stress equations 

since the osmotic pressure only describes the equilibrium state. It is also questionable 

that the shear modulus here is constant as it is not the case in rubber swelling. If G’ 

and G0 are the respective moduli in the swollen and unswollen states, their relation is 

(Treloar, 2005): 

 
𝐺′ = 𝐺0𝜈2

1
3 (2.5.71)  

2.5.3  Swelling mechanics summary 

From the discussions in Section 2.5.1 and 2.5.2, it can be summarised that Hooke‘s 

law of elasticity is an approximation that the amount by which a material body is 

deformed (the strain) is linearly related to the force causing the deformation (the 

stress). The moduli are material independent and keep constant during swelling. 

Materials for which the Hooke‘s law holds are known as linear elastic or ―Hookean‖ 

materials. However, rubber-like materials are nonlinear. The modulus of a rubber is 

material dependent shown by equation (2.5.47). Equation (2.5.71) also suggests that 

the modulus of a swollen rubber decreases as the rubber swelling ratio increases. 
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Therefore, mechanical structure equations cannot be used in this thesis. 

 

The only choice left for swelling mechanics is to use the rubber elasticity theory to 

describe the pressure inside a polyelectrolyte gel. This choice is not very satisfactory. 

In Section 2.5.1, several pressure models were presented. When compared those 

models with experimental results of the inflation of a spherical rubber balloon, 

divergence was found in regions with large swelling ratios as suggested in Figure 2.12 

and 2.13. However, the rubber elasticity theory is still chosen to describe swelling 

mechanics since there is no evidence that the pressure models can be improved by 

rubber elasticity theory. To improve the pressure models, a significant amount of new 

research needs to be carried out. 

2.6  Protein charge 

Proteins are natural polymer molecules consisting of amino acid units. The number of 

amino acids in proteins may range differently. Each amino acid has at least one basic 

amine group –NH2 and one acidic functional group –COOH shown in Figure 2.14.  

 

Figure 2.14 The simplest amino acid 

where R stands for a variety of side chains.  

 

As mentioned before there is an internal transfer of a hydrogen ion from the –COOH 

group to the –NH2 group to leave an ion with both a negative charge and a positive 

charge. This is called a zwitterion as shown in Figure 2.15. 

 

Figure 2.15 A zwitterion 
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Normally the amino acid produces a nearly neutral solution. The different properties 

of amino acids result from the structures of different R groups. The R group is often 

referred to as the amino acid side chain. If there is an extra acid on the side chain, 

there is a net acid producing effect. If the side chain contains an extra amine group, 

then the amino acid produces a basic solution. In β-lactoglobulin proteins, acidic 

amino acids include aspartic (Asp) and glutamic (Glu) and basic side chains include 

lysine (Lys), arginine (Arg) and histidine (His).  

 

Most of the following section is based on Fessenden and Fessenden (1986) and Segel 

(1968).   

 

When an amino acid dissolves in water, the zwitterion interacts with water molecules 

acting as both an acid and a base. As an acid: 

 𝑁𝐻3
+𝑅𝐶𝐻𝐶𝑂𝑂− + 𝐻2𝑂 ↔ 𝑁𝐻2𝑅𝐶𝐻𝐶𝑂𝑂

− + 𝐻3𝑂
+ (2.6.1)  

The –NH3
+
 group is a weak acid and donates a hydrogen ion to a water molecule. 

Because it is only a weak acid, the position of equilibrium will lie to the left. 

As a base: 

 𝑁𝐻3
+𝑅𝐶𝐻𝐶𝑂𝑂− + 𝐻2𝑂 ↔ 𝑁𝐻3

+𝑅𝐶𝐻𝐶𝑂𝑂𝐻 + 𝑂𝐻− (2.6.2)  

The –COO
-
 group is a weak base and takes a hydrogen ion from a water molecule. 

Again the equilibrium lies to the left.  

 

Therefore, in an aqueous solution of an amino acid the above two acid-base 

dissociation equilibria take place simultaneously. All the species involved in these 

reactions appear to be electrically charged, except for the neutral zwitterions 

(𝑁𝐻3
+𝑅𝐶𝐻𝐶𝑂𝑂− ). Each of the above equilibria may be characterised by a 

thermodynamic equilibrium constant (Ka). 

 

From a standard point of view, for a simple acid/base system we have an equilibrium 

as: 
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 un-ionised acid ↔ anion+ 𝐻+ (2.6.3)  

The pH of a solution is defined as: 

 𝑝𝐻 = −𝑙𝑜𝑔10[𝐻
+] (2.6.4)  

The equilibrium constant, Ka, is defined for acids as: 

 𝐾𝑎 =
[𝐻+][anion]

[un-ionised acid]
 (2.6.5)  

The pKa is then obtained: 

 𝑝𝐾𝑎 = −𝑙𝑜𝑔10(𝐾𝑎) (2.6.6)  

Equation (2.6.6) is combined with equation (2.7.4) and (2.7.5) to give: 

 𝑝𝐻 = 𝑝𝐾𝑎 + 𝑙𝑜𝑔10
[anion]

[un-ionised acid]
 (2.6.7)  

which is also called Henderson-Hasselbach equation. 

Similarly for bases we can define pKb as: 

 𝐾𝑏 =
[𝑂𝐻−][cation]

[un-ionised base]
 (2.6.8)  

And hence 

 𝑝𝐾𝑏 = −𝑙𝑜𝑔10(𝐾𝑏) (2.6.9)  

Bringing it to equation (2.6.8): 

 𝑝𝐾𝑏 = −(𝑙𝑜𝑔10[𝑂𝐻
−] + 𝑙𝑜𝑔10[cation] − 𝑙𝑜𝑔10[un-ionised base]) (2.6.10)  

Also we have water dissociation equilibrium: 

 𝐾𝑤 = [𝐻
+][𝑂𝐻−] (2.6.11)  

At 25 °C, pKw is 13.9965 (often 14 is used). 

 𝑙𝑜𝑔10[𝐻
+] + 𝑙𝑜𝑔10[𝑂𝐻

−] = −14 (2.6.12)  

Coming back to equation (2.6.10) we have: 

 𝑝𝐾𝑏 = 14 − 𝑝𝐻 + 𝑙𝑜𝑔10
[cation]

[un-ionised base]
 (2.6.13)  

So 

 −𝐾𝑏 =
[cation]

[un-ionised base]
1014−𝑝𝐻 (2.6.14)  

 

However, this standard acid/base view is limited when we come to consider amino 

acids and proteins. A more general view of the equilibrium can be: 

 protonated form ↔ unprotonated form + 𝐻+ (2.6.15)  
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And 

 proton donor ↔ proton acceptor + 𝐻+ (2.6.16)  

For example: 

 𝐻𝐶𝑙 + 𝐻2𝑂 ↔ 𝐶𝑙− + 𝐻3𝑂
+ (2.6.17)  

But the presence of water is normally ignored because of the H2O, OH
–
 and H

+
 

equilibrium, so the equivalent form is often written as: 

 𝐻𝐶𝑙 ↔ 𝐶𝑙− + 𝐻+ (2.6.18)  

Also we can view the reverse dissociation of a base a giving a proton: 

 𝑁𝑎+ + 𝐻2𝑂 ↔ 𝑁𝑎𝑂𝐻 +𝐻+ (2.6.19)  

which we might also write as 

 𝑁𝑎𝑂𝐻 ↔ 𝑁𝑎+ + 𝑂𝐻− (2.6.20)  

The NaOH equilibrium can be written: 

 𝐾𝑎 =
[𝑁𝑎𝑂𝐻][𝐻+]

[𝑁𝑎+]
 (2.6.21)  

Or 

 𝐾𝑏 =
[𝑁𝑎+][𝑂𝐻−]

[𝑁𝑎𝑂𝐻]
 (2.6.22)  

If the above two are multiplied together: 

 𝐾𝑎𝐾𝑏 = [𝐻
+][𝑂𝐻−] = 𝐾𝑤 (2.6.23)  

The amino group and the carboxyl group of the amino acid have pKa‘s of about 9.6 

and 2.3 respectively. Thus, the amino acid can exist in three general forms. At low pH 

the amino and carboxyl groups will be protonated and the molecules will be in the 

acid form in Figure 2.16. 

 

Figure 2.16 Acid form of an amino acid 

 

As the pH increases towards neutrality, the amino acids become zwitterions having 

both negative and positive charges (Figure 2.15). As the pH increases further, the 

molecules become basic (Figure 2.17): 
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Figure 2.17 Basic form of an amino acid 

 

Proteins are composed of many amino acids. In the context of amino acids (and 

subsequently proteins) it is best to consider the two protonated forms. The pH 

dependent equilibrium (using alanine as an example) can be written as: 

 𝑁𝐻3
+𝐶𝐻𝐶𝐻3𝐶𝑂𝑂𝐻 ↔ 𝑁𝐻3

+𝐶𝐻𝐶𝐻3𝐶𝑂𝑂
− + 𝐻+

↔ 𝑁𝐻2𝐶𝐻𝐶𝐻3𝐶𝑂𝑂
− + 2𝐻+ 

(2.6.24)  

There are two equilibria and hence two pKa constants (2.35 and 9.69). 

 
𝐾𝑎1 =

[𝐻+][𝑁𝐻3
+𝐶𝐻𝐶𝐻3𝐶𝑂𝑂

−]

[𝑁𝐻3
+𝐶𝐻𝐶𝐻3𝐶𝑂𝑂𝐻]

 (2.6.25)  

with pKa1 = 2.35. 

and 

 
𝐾𝑎2 =

[𝐻+][𝑁𝐻2𝐶𝐻𝐶𝐻3𝐶𝑂𝑂
−]

[𝑁𝐻3
+𝐶𝐻𝐶𝐻3𝐶𝑂𝑂−]

 (2.6.26)  

with pKa2 = 9.69. 

From (2.6.25) we have: 

 
𝑝𝐻 = 𝑝𝐾𝑎1 + 𝑙𝑜𝑔10

[𝑁𝐻3
+𝐶𝐻𝐶𝐻3𝐶𝑂𝑂

−]

[𝑁𝐻3
+𝐶𝐻𝐶𝐻3𝐶𝑂𝑂𝐻]

 (2.6.27)  

Similarly from equation (2.6.27): 

 𝑝𝐻 = 𝑝𝐾𝑎2 + 𝑙𝑜𝑔10
[𝑁𝐻2𝐶𝐻𝐶𝐻3𝐶𝑂𝑂

−]

[𝑁𝐻3
+𝐶𝐻𝐶𝐻3𝐶𝑂𝑂−]

 (2.6.28)  

The total concentration can be calculated by: 

 [𝑁𝐻3
+𝐶𝐻𝐶𝐻3𝐶𝑂𝑂𝐻] + [𝑁𝐻3

+𝐶𝐻𝐶𝐻3𝐶𝑂𝑂
−]

+ [𝑁𝐻2𝐶𝐻𝐶𝐻3𝐶𝑂𝑂
−] = 𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 

(2.6.29)  

which will be abbreviated as c1 + c2 + c3 = ctotal  

For a given pH, three concentrations can be calculated by using equation (2.6.27), 

(2.6.28) and (2.6.29). By using equation (2.6.27): 

 𝑐2 = 10
(𝑝𝐻−𝑝𝐾𝑎1)𝑐1 (2.6.30)  
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and from equation (2.6.28): 

 𝑐3 = 10
(𝑝𝐻−𝑝𝐾𝑎2)𝑐2 (2.6.31)  

So 

 𝑐3 = 10
(𝑝𝐻−𝑝𝐾𝑎2)10(𝑝𝐻−𝑝𝐾𝑎1)𝑐1 (2.6.32)  

Thus c1 can be found from: 

 𝑐1(1 + 10
(𝑝𝐻−𝑝𝐾𝑎1) + 10(𝑝𝐻−𝑝𝐾𝑎2)10(𝑝𝐻−𝑝𝐾𝑎1)) = 𝑐𝑡𝑜𝑡𝑎𝑙 (2.6.33)  

and sequentially the other concentrations can be found. 

 

Let us now consider pH titration from 0 to 14. When the amino acid is dissolved in 

water, a simple solution contains three forms. If the pH is increased by adding 

hydroxide ions, the hydrogen ion is removed from the –NH3
+
 group. 

 𝑁𝐻3
+𝐶𝐻𝐶𝐻3𝐶𝑂𝑂

− + 𝑂𝐻− → 𝑁𝐻2𝐶𝐻𝐶𝐻3𝐶𝑂𝑂
− + 𝐻2𝑂 (2.6.34)  

The amino acid now exists as a negative ion. 

If the pH is decreased by adding an acid to the amino acid, the –COO
-
 part of the 

zwitterions picks up a hydrogen ion. 

 𝑁𝐻3
+𝐶𝐻𝐶𝐻3𝐶𝑂𝑂

− + 𝐻+ → 𝑁𝐻3
+𝐶𝐻𝐶𝐻3𝐶𝑂𝑂𝐻 (2.6.35)  

Suppose we start with the ions we have just produced under acidic conditions and 

slowly add alkali to it. That ion contains two acidic hydrogens: the one in the –COOH 

group and the one in the –NH3
+
 group. The more acidic of these is the one in the 

–COOH, and so that is removed first and we get back to the zwitterion. 

 𝑁𝐻3
+𝐶𝐻𝐶𝐻3𝐶𝑂𝑂𝐻 + 𝑂𝐻

− → 𝑁𝐻3
+𝐶𝐻𝐶𝐻3𝐶𝑂𝑂

− + 𝐻2𝑂 (2.6.36)  

So when we have added just the right amount of alkali, the amino acid no longer has a 

net positive or negative charge. If we go on adding hydroxide ions, we will get the 

reaction in which a hydrogen ion is removed from the –NH3
+
 group. 

 𝑁𝐻3
+𝐶𝐻𝐶𝐻3𝐶𝑂𝑂

− + 𝑂𝐻− → 𝑁𝐻2𝐶𝐻𝐶𝐻3𝐶𝑂𝑂
− + 𝐻2𝑂 (2.6.37)  

The amount of H
+
 produced by the shift in equilibrium from 100% c1 is c2 + 2c3

 
and 

hence the amount of OH
–
 is the amount required to neutralise the H

+
 produced. The 

titration with OH
–
 is shown by Figure 2.18. 
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At this point the equations from Segel (1968) need to be applied to the protein system 

of interest in this research. The remainder of this section is the application of Segel‘s 

calculation methods to the current research. 

 

Each protein molecule has in its amino acid sequence many different residues with 

potential hydrogen ion equilibria. At any given pH, these residues will be in various 

protonation states depending on their individual hydrogen ion dissociation constant i.e. 

pKas. Thus the protein will have a net charge which varies with pH. With knowledge 

of all the individual pKas of all the possible hydrogen ion equilibria found in a protein, 

it is possible to calculate the absolute net charge of a protein as a function of pH.  

 

Figure 2.18 The titration of an amino acid 

 

In every protein molecule there are Nki acid/base equilibria of type i, each described 

by a hydrogen ion dissociation constant Kai such that: 

 
𝐻𝐴𝑖

+/0 𝐾𝑎𝑖
↔ 𝐻+ + 𝐴𝑖

0/−
 (2.6.38)  

The superscript of +/0 indicates that the protein molecule can be positive or neutral 

and 0/- indicates that the protein molecule can be neutral or negative. 

With 

 

𝐾𝑎𝑖 =
[𝐻+][𝐴0/−]

𝑖

[𝐻𝐴+/0]𝑖
 (2.6.39)  

These equilibria occur on the side chains of acidic or basic residues and at the amino 
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and carboxyl termini of the amino acid chain in the protein. Taking the logarithm of 

equation (2.6.39) yields the Henderson-Hasselbach equation already mentioned 

before: 

 

𝑝𝐻 − 𝑝𝐾𝑎𝑖 = 𝑙𝑜𝑔10
[𝐴0/−]

𝑖

[𝐻𝐴+/0]𝑖
 (2.6.40)  

A mass balance on titratable sites of type i dictates that the total concentration of sites 

must equal the sum of the concentrations of unprotonated and protonated sites of type 

i: 

 [𝑆]𝑖 = [𝐴
0/−]

𝑖
+ [𝐻𝐴+/0]

𝑖
 (2.6.41)  

Here 

 [𝑆]𝑖 = 𝑁𝑘𝑖 ∙ [𝑃] (2.6.42)  

where [P] is the total protein concentration denoted by cpt in calculation. 

 

Combining equations (2.6.40) to (2.6.42) yields expressions for the molar 

concentrations of protonated and unprotonated sites of type i in terms of the quantities 

pH, pKai and ni:  

 
[𝐴0/−]

𝑖
= [𝑃]

𝑁𝑘,𝑖10
(𝑝𝐻−𝑝𝐾𝑎𝑖)

10(𝑝𝐻−𝑝𝐾𝑎𝑖) + 1
 (2.6.43)  

and 

 
[𝐻𝐴+/0]

𝑖
= [𝑃]

𝑁𝑘,𝑖10
(𝑝𝐾𝑎𝑖−𝑝𝐻)

10(𝑝𝐾𝑎𝑖−𝑝𝐻) + 1
 (2.6.44)  

The parameters (Nk,i and pKai) of amino acids found experimentally in β-lactoglobulin 

protein are given by Table 2.3 (Mercadé-Prieto et al., 2007b). 

 

Table 2.3 Parameters for β-lactoglobulin amino acid groups (Mercadé-Prieto et al., 2007b) 

 Amino acid 

Asp, Glu and 

α-COOH 
His 

Cys and 

α- NH2 
Tyr Lys Arg 

Ser and 

Thr 

Nk 28 2 2 4 15 3 15 

pKa 4 6 8.5 10.4 10.95 12.52 13.22 

charge -1 +1 -1 -1 +1 +1 -1 
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The net charge of the protein is the summation of negative charges and positive 

charges from all of the side groups: 

 [𝑝𝑟𝑜𝑡𝑒𝑖𝑛 𝑛𝑒𝑡 𝑐𝑕𝑎𝑟𝑔𝑒] = 𝑐𝑝𝑡∑𝑁𝑘,𝑖𝑧𝑖
10𝑧𝑖(𝑝𝐾𝑎𝑖−𝑝𝐻)

10𝑧𝑖(𝑝𝐾𝑎𝑖−𝑝𝐻) + 1
 (2.6.45)  

with zi the charge of different protein side group +1 or -1. 

 

The concentration of undissociated hydrogen in β-lactoglobulin protein is the 

summation of unprotonated sites calculated by equation (2.6.44): 

 [protein bound 𝐻] = 𝑐𝑝𝑡∑𝑁𝑘𝑖
10(𝑝𝐾𝑎𝑖−𝑝𝐻)

10(𝑝𝐾𝑎𝑖−𝑝𝐻) + 1
 (2.6.46)  

Figure 2.19 shows the concentration of H bounded by protein as a function of pH. 

 

Figure 2.19 Protein bound H in β-lactoglobulin protein as a function of pH calculated by equation 

(2.6.46) 

 

The total charge in protein is shown in Figure 2.20. It can be seen that at low pH (<4.3 

approximately), the protein gives a overall positive charge influence and that means it 

can be treated as –NH3
+
 (proton donor), as the pH increases to about 4.4, often called 

pI, it has no charge behaving like a zwitterion, and as the pH continuously increases, 

the protein has a negative charge like –COO
-
 (proton acceptor). 

 

The approach outlined here assumes that there are no interactions between different 

side groups or with other components in solution. A more complex calculation 

procedure is outlined by Bas et al. (2008).  
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Figure 2.20 The protein net charge 

2.7  Material balance 

Balance equations for material (on a mole or mass basis) provide the foundation for 

much of the physical-based modelling in transport phenomena. For example, in the 

protein gel swelling system, ions transport into the gel region and may react with ions 

dissociated from the protein, and thus water may be produced. Species transportation 

can be determined by using the generalised Maxwell-Stefan equations. However, they 

are spatially dependent and for a time-dependent problem, it is necessary to describe 

the change in concentration as a function of time. This must be achieved by using the 

material balances. 

 

Generally speaking the material balance equations are often applied to a fixed control 

volume. For this system, the gel matrix will swell and thus the control volume is 

changing with time. Thus it is necessary to examine the fundamental mechanism 

responsible for material balance in order to validate that the general material balance 

equations are also applicable to a dynamic problem with a changing control volume. 

 

The following discussion is mainly based on White (1998) and Higgins (2004). To 

begin with it is helpful to introduce two coordinate systems in fluid dynamics: 
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Eulerian and Lagrangian coordinate systems. 

 

Figure 2.21 Motion of a particle described in Eulerian and Lagrangian coordinates 

 

Figure 2.21 shows the motion of a fluid particle described by Eulerian and Lagrangian. 

Eulerian coordinates measure position in a fixed frame of reference. The symbols 

used are the position vectors x, and the Cartesian coordinates x, y and z. Although the 

position of a fluid particle is a function of time the coordinate axes are fixed. This can 

be visualised as sitting on a river bank and watching the water pass the fixed location. 

On the other hand from a Lagrangian perspective the position of a particle that was at 

x0 at time t0 has coordinates X, Y and Z. Because the particle moves, X, Y and Z are 

functions of time. This can be visualised as sitting in a boat and drifting down a river. 

 

In the same manner, there are several possibilities for defining a control volume, 

based on the kinetics of the surface enveloping the control volume. If we select a 

control volume V(t) with a surface of S(t) defined by its outward directed unit normal 

n, and the surface velocity of the control volume moving through the fluid is u, then 

there are three possibilities of defining a control volume: 

 

1. Material control volume 

In this case, the local mass average velocity of the fluid is equal to the surface of the 

control volume velocity. Since the surface of the control volume moves the same as 

the velocity of the fluid, there is no mass flux of fluid in or out the surface and thus 

the control volume retains the material originally present within its control surface. 

This kind is called material control volume denoted by Vm(t) and its control surface by 

z 

y 

x 

x0 

X(x0, t) Particle path 
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Sm(t). Material control volumes are also called Lagrangian control volumes. They are 

seldom used in the analysis of problems since they move through space, change shape 

and deform and it is impossible to define boundaries. However, they are often used in 

the derivation of balance equations.  

 

2. Fixed control volumes 

In this case, the surface velocity of the control volume is zero. The control volume is 

therefore fixed in physical space and thus mass flux can pass through the control 

surface that defines inflow and outflow boundaries. Fixed control volumes define 

open systems when mass fluxes can enter or leave through control surfaces. 

 

3. Moving control volumes 

In this case, the surface velocity of the control volume is not zero and is not equal to 

the mass average velocity either. Thus moving control volume will normally have 

mass flux passing through the control surface that defines inflow and outflow 

boundaries. The moving control volume is denoted by V(t) and its control surface by 

S(t). 

Having understood the definition of different control volumes, we need to know the 

Reynolds transport theorems. The Reynolds transport theorem allows one to 

determine how a given quantity defined within a control volume changes with time as 

the control volume deforms. In the following discussion it will be shown that the 

choice of a control volume does not affect the point material balance equation. 

Consider a scalar quantity ψ(x,t) defined per unit volume. The total amount of ψ(x,t) 

in a material control volume Vm(t) is: 

 
∫ 𝜓

𝑉𝑚(𝑡)

(𝐱, 𝑡)𝑑𝑉 (2.7.1)  

The time rate of change is: 
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 𝑑

𝑑𝑡
∫ 𝜓(𝐱, 𝑡)

𝑉𝑚(𝑡)

𝑑𝑉 (2.7.2)  

Since the size and shape of Vm(t) are functions of time, the time derivative inside the 

integral cannot be taken directly. The Reynolds transport theorem allows one to move 

the time derivative inside the integral and for material control volumes it can be 

written as: 

 𝑑

𝑑𝑡
∫ 𝜓(𝐱, 𝑡)

𝑉𝑚(𝑡)

𝑑𝑉 = ∫ (
𝜕𝜓

𝜕𝑡
+ ∇ ∙ (𝜓𝒗)+

𝑉𝑚(𝑡)

𝑑𝑉 (2.7.3)  

Here v is the mass average velocity of the fluid. 

 

The divergence theorem (Versteeg and Malalasekera, 2007) relates volume integrals 

to surface integrals of vector fields. For the vector v, it writes: 

 
∫(∇ ∙ 𝒗)

𝑉

𝑑𝑉 = ∫(𝒗 ∙ 𝐧)

𝑆

𝑑𝑆 (2.7.4)  

By applying the divergence theorem (2.7.4), the above equation can be written as: 

 𝑑

𝑑𝑡
∫ 𝜓(𝐱, 𝑡)

𝑉𝑚(𝑡)

𝑑𝑉 = ∫
𝜕𝜓

𝜕𝑡
𝑉𝑚(𝑡)

𝑑𝑉 + ∫ 𝜓𝒗 ∙ 𝐧𝑑𝑆

𝑆𝑚(𝑡)

 (2.7.5)  

If instead the control volume is moving control volume V(t) with surface S(t), such 

that the surface moves with velocity u, then the time rate of change of the total 

amount of ψ in the control volume is: 

 𝑑

𝑑𝑡
∫ 𝜓(𝐱, 𝑡)

𝑉(𝑡)

𝑑𝑉 = ∫ (
𝜕𝜓

𝜕𝑡
+ ∇ ∙ (𝜓𝒖)+

𝑉(𝑡)

𝑑𝑉 (2.7.6)  

This is called the generalised Reynolds transport theorem. It also applies to vectors 

and tensors. For example to determine how a vector G(x,t) changes with time, the 

direct application of the generalised Reynolds transport theorem gives: 

 𝑑

𝑑𝑡
∫ 𝐆(𝐱, 𝑡)

𝑉(𝑡)

𝑑𝑉 = ∫ (
𝜕𝐆

𝜕𝑡
+ ∇ ∙ (𝐆𝒖)+

𝑉(𝑡)

𝑑𝑉 (2.7.7)  

 

Next we are going to derive the general form for a balance quantity. As before let n be 

the outward directed unit normal to a material control volume Vm(t) with a surface 
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Sm(t). Because a material control volume is considered, the surface velocity of Vm(t) is 

equal to the mass average velocity of the fluid v evaluated at surface Sm(t). The 

general form for a balance principle in a material control volume is: 

 𝑑

𝑑𝑡
∫ 𝜌𝜓

𝑉𝑚(𝑡)

𝑑𝑉 = ∫ 𝜌𝑠𝑑𝑉

𝑉𝑚(𝑡)

+ ∫ −𝐣 ∙ 𝐧𝑑𝑆

𝑆𝑚(𝑡)

= 0 (2.7.8)  

in which ψ is a physical quantity defined per unit mass, ρ is the density, s is the rate of 

supply of ψ per unit mass per unit time, and −𝐣 ∙ 𝐧 is the influx of ψ per unit area per 

unit time. 

 

The above equation is an integral statement and it can be formulated as a point 

equation by applying the Reynolds theorem along with the divergence theorem. The 

left hand side of the above equation is: 

 𝑑

𝑑𝑡
∫ 𝜌𝜓

𝑉𝑚(𝑡)

𝑑𝑉 = ∫ (
𝜕(𝜌𝜓)

𝜕𝑡
+ ∇ ∙ (𝜌𝜓𝒗)+

𝑉𝑚(𝑡)

𝑑𝑉 (2.7.9)  

Applying the divergence theorem to the surface integral in the balance principle gives: 

 
∫ −𝐣 ∙ 𝐧𝑑𝑆

𝑆𝑚(𝑡)

= − ∫ (∇ ∙ 𝐣)

𝑉𝑚(𝑡)

𝑑𝑉 (2.7.10)  

Then: 

 
∫ (

𝜕(𝜌𝜓)

𝜕𝑡
+ ∇ ∙ (𝜌𝜓𝒗) − 𝜌𝑠 + ∇ ∙ 𝐣)

𝑉𝑚(𝑡)

𝑑𝑉 = 0 (2.7.11)  

Since the control volume is arbitrary, it then follows that the integrand must be zero 

everywhere, which means: 

 𝜕(𝜌𝜓)

𝜕𝑡
+ ∇ ∙ (𝜌𝜓𝒗) − 𝜌𝑠 + ∇ ∙ 𝐣 = 𝟎 (2.7.12)  

This is the point equation for a conserved quantity.  

 

If ρ(x,t) is the local density of the fluid then the total mass in an arbitrary material 

control volume is given by: 

 
𝑀(𝑡) = ∫ 𝜌

𝑉𝑚(𝑡)

(𝐱, 𝑡)𝑑𝑉 (2.7.13)  
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For the material control volume, the time rate of change of the total mass is zero. 

Hence 

 𝑑𝑀

𝑑𝑡
=
𝑑

𝑑𝑡
∫ 𝜌

𝑉𝑚(𝑡)

(𝐱, 𝑡)𝑑𝑉 = 0 (2.7.14)  

If we apply the Reynolds transport theorem, we have 

 𝑑

𝑑𝑡
∫ 𝜌

𝑉𝑚(𝑡)

(𝐱, 𝑡)𝑑𝑉 = ∫ (
𝜕𝜌

𝜕𝑡
+ ∇ ∙ (𝜌𝒗)+

𝑉𝑚(𝑡)

𝑑𝑉 (2.7.15)  

The point equation of conservation of mass is then: 

 𝜕𝜌

𝜕𝑡
+ ∇ ∙ (𝜌𝒗) = 0 (2.7.16)  

 

For an arbitrary moving control volume the mass balance in the control volume V(t) 

is: 

{
Time rate of change

of mass in 𝑉(𝑡)
} = {

Net influx of mass

through 𝑆(𝑡)
} 

In mathematical terms: 

 𝑑

𝑑𝑡
∫ 𝜌

𝑉(𝑡)

𝑑𝑉 = − ∫ 𝐣 ∙ 𝐧𝑑𝑆

𝑆(𝑡)

 (2.7.17)  

where j is the mass flux vector relative to the surface. At the surface a mass flux n(x,t) 

can be defined in terms of the mass average velocity of the fluid and the local density: 

 𝒏(𝐱, 𝑡) = 𝜌(𝐱, 𝑡)𝒗(𝐱, 𝑡) (2.7.18)  

In the control volume V(t) the surface S(t) is not fixed but moves with velocity u(x,t) 

relative to a given reference frame. Thus the mass flux across that surface must also 

be relative: 

 𝒏𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 = 𝐣 = 𝜌𝒗𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 (2.7.19)  

The relative velocity is given by: 

 𝒗𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 = 𝒗 − 𝒖 (2.7.20)  

Combining the equation (2.7.17) with (2.7.19) and (2.7.20), the mass balance equation 

gives: 

 𝑑

𝑑𝑡
∫ 𝜌

𝑉(𝑡)

𝑑𝑉 = − ∫ 𝐣 ∙ 𝐧𝑑𝑆

𝑆(𝑡)

= − ∫ 𝜌(𝒗 − 𝒖) ∙ 𝐧𝑑𝑆

𝑆(𝑡)

 (2.7.21)  
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This is the integral statement of mass balance in a moving control volume. Compare 

this result with the integral equation of mass balance in a material control volume 

given by: 

 𝑑

𝑑𝑡
∫ 𝜌

𝑉𝑚(𝑡)

𝑑𝑉 = 0 (2.7.22)  

Rewrite the mass balance equation in a moving control volume by using the 

generalised Reynolds transport theorem: 

 𝑑

𝑑𝑡
∫ 𝜌

𝑉(𝑡)

(𝐱, 𝑡)𝑑𝑉 = ∫ (
𝜕𝜌

𝜕𝑡
+ ∇ ∙ (𝜌𝒖)+

𝑉(𝑡)

𝑑𝑉 (2.7.23)  

 

 
∫ 𝜌(𝒗 − 𝒖) ∙ 𝐧𝑑𝑆

𝑆(𝑡)

= ∫ ∇ ∙ 𝜌(𝒗 − 𝒖)

𝑉(𝑡)

𝑑𝑉 (2.7.24)  

 

 
∫ (

𝜕𝜌

𝜕𝑡
+ ∇ ∙ (𝜌𝒖) + ∇ ∙ 𝜌(𝒗 − 𝒖)+

𝑉(𝑡)

𝑑𝑉 = 0 (2.7.25)  

 

 
∫ (

𝜕𝜌

𝜕𝑡
+ ∇ ∙ (𝜌𝒗)+

𝑉(𝑡)

𝑑𝑉 = 0 (2.7.26)  

It can be seen that the surface velocity of the moving volume u is cancelled out. 

Since V(t) is arbitrary, it should be: 

 𝜕𝜌

𝜕𝑡
+ ∇ ∙ (𝜌𝒗) = 0 (2.7.27)  

It shows that the point equation describing the mass balance is independent of the 

choice of a control volume. The same result (equation (2.7.16) and (2.7.27)) is 

obtained whether a moving control volume or a material control volume is used. 

Using a material volume one can considerably simplify the deviation of the 

conservation equations. It is proved that mass balance equations can be used to this 

dynamic swelling modeling. 

 

At this point it is verified that the general balance principle can be used in any case 
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whether the system is fixed or moving. Next we consider the point equation of the 

balance principle using Taylor and Krishna (1993) terminology: 

 𝜕(𝜌𝑡𝜓)

𝜕𝑡
+ ∇ ∙ (𝜌𝑡𝜓𝒗) + ∇ ∙ 𝚽 = 𝜁 (2.7.28)  

where ψ is an arbitrary field quantity per unit mass of mixture, δ is the rate of 

production of field per unit volume of bulk phase, Φ is a diffusion flux of the field 

quantity through external surface, ρt is the mass density of fluid mixture and v is the 

mass average velocity of fluid mixture. It is the same as equation (2.7.12) with Φ 

replaced j and δ replaced 𝜌𝑠. We must remember that Φ is local to the surface for a 

moving fluid mixture. 

 

For the balance of components in a system with no chemical reactions: 

 𝜓 = 𝜔𝑖     𝚽 = 𝒋𝑖       𝜁 = 0  (2.7.29)  

in which ωi is the mass fraction of component i and ji is the mass diffusion flux with 

respect to a chosen reference velocity. 

 

For the conservation of total mass: 

 𝜓 = 1     𝚽 = 0      𝜁 = 0  (2.7.30)  

Therefore the mass balance equation for continuity of mass of species i in a 

non-reacting system is: 

 𝜕𝜌𝑖
𝜕𝑡
+ ∇ ∙ (𝜌𝑖𝒗) + ∇ ∙ 𝒋𝑖 = 0 (2.7.31)  

with 

 𝒋𝑖 = 𝜌𝑖(𝒖𝑖 − 𝒗) (2.7.32)  

The mass balance equation in terms of the velocity of component i, ui, is: 

 𝜕𝜌𝑖
𝜕𝑡
+ ∇ ∙ (𝜌𝑖𝒖𝑖) = 0 (2.7.33)  

In terms of the component concentration: 

 𝜕𝑐𝑖
𝜕𝑡
+ ∇ ∙ (𝑐𝑖𝒖𝑖) = 0 (2.7.34)  

The molar flux of species i is defined by: 

 𝑵𝑖 = 𝑐𝑖𝒖𝑖 (2.7.35)  
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The mass balance in terms of molar flux: 

 𝜕𝑐𝑖
𝜕𝑡
+ ∇ ∙ 𝑵𝑖 = 0 (2.7.36)  

in which ci is the concentration of component i and Ni is the molar flux. 

The molar diffusion flux can be defined relative to an arbitrary reference velocity u
a
 

by: 

 𝑱𝑖
𝑎 = 𝑐𝑖𝒖𝑖 − 𝑐𝑖𝒖

𝑎 (2.7.37)  

The differential balance equations take the form in terms of the diffusion fluxes with 

respect to a reference velocity: 

 𝜕𝑐𝑖
𝜕𝑡
+ ∇ ∙ (𝑱𝑖

𝑎 + 𝑐𝑖𝒖
𝑎) = 0 (2.7.38)  

 

In a system with chemical reactions, a species is neither lost nor gained. The δ term is 

not zero. The mass balance equation for species in a reacting system can be rewritten 

as: 

 𝜕𝑐𝑖
𝜕𝑡
+ ∇ ∙ (𝑱𝑖

𝑎 + 𝑐𝑖𝒖
𝑎) =  𝜁 (2.7.39)  

With δ defined by: 

 
ζ =∑𝑣𝑗𝑅𝑗

𝑗

 (2.7.40)  

where v
j
 is the stoichiometric coefficient of species i in the jth reaction and R

j
 is the 

reaction rate in the jth reaction. 

 

The problem with solving equation (2.7.40) is that the reaction rates for each reaction 

are sometimes large leading to stiffness of the equations. Stiffness means ordinary 

differential equations with a wide range of time constants are difficult to solve. The 

reason for this is that the transport and reaction processes that are included in the 

model can occur on widely different time scales (Hofmann et al., 2008).   
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2.7.1  Elimination of reactions in acid-base systems 

Di Toro (1976) has given mathematical proof for solving this type of problem by 

eliminating the reaction terms and solving an alternate set of equations. Later similar 

approaches can be found in Moe et al. (1995) and Kakhu and Pantelides (2003). 

 

Di Toro (1976) considered carbon dioxide dissolved in water equilibrium: 

 
𝐶𝑂2 + 𝐻2𝑂

𝐾1
⇔𝐻+ + 𝐻𝐶𝑂3

− (2.7.41)  

 
𝐻𝐶𝑂3

−
𝐾2
⇔𝐻+ + 𝐶𝑂3

2− (2.7.42)  

 
𝐻2𝑂

𝐾𝑤
⇔𝐻+ + 𝑂𝐻− (2.7.43)  

in which K1, K2 and Kw are dissociation constants for each corresponding reaction. 

The major species involved are: CO2, HCO3
-
, CO3

2-
, H

+
, H2O and OH

-
. Because the 

individual species are reactive a total concentration needs to be defined: 

 𝑐𝑇 = [𝐶𝑂2] + [𝐻𝐶𝑂3
−] + [𝐶𝑂3

2−] (2.7.44)  

And the dissociation equilibria for the above reactions are: 

 𝐾1 =
[𝐻+][𝐻𝐶𝑂3

−]

[𝐶𝑂2]
 (2.7.45)  

 
𝐾2 =

[𝐻+][𝐶𝑂3
2−]

[𝐻𝐶𝑂3
−]

 (2.7.46)  

 𝐾𝑤 =
[𝐻+][𝑂𝐻−]

[𝐻𝑂2]
 (2.7.47)  

Thus if cT is known, the concentration of all species involved is easily obtained. It is 

traditional to write the mass balance equations for each species. However the solution 

of these differential equations is quite hard to obtain because the large reaction rates 

cause stiffness of the equations.   

 

Di Toro‘s method (1976) was to avoid large stiffness by eliminating the reaction terms 

and solving an alternate set of equations.   

Species involved are indentified in a matrix written as: 

 [𝐶𝑂2 𝐻𝐶𝑂3
− 𝐶𝑂3

2−    𝐻+ 𝐻2𝑂 𝑂𝐻−]𝑇 (2.7.48)  
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Components chosen are: 

 [𝐶𝑂2 𝐻+ 𝐻2𝑂]
𝑇 (2.7.49)  

Then vector (2.7.48) can be formulated by matrix multiplication: 

 [𝐶𝑂2 𝐻𝐶𝑂3
− 𝐶𝑂3

2−    𝐻+ 𝐻2𝑂 𝑂𝐻−]𝑇

= 𝐅[𝐶𝑂2 𝐻+ 𝐻2𝑂]
𝑇 

(2.7.50)  

F, called the formula matrix, is: 

 

𝐅 =

[
 
 
 
 
 
1 0 0
1 −1 1
1 −2 1

 

0 1 0
0 0 1
0 −1 1]

 
 
 
 
 

 (2.7.51)  

R, called the reaction matrix, can be written according to species in each reaction: 

 
𝐑 = [

1 −1 0
0 1 −1
0 0 0

     
−1 1 0
−1 0 0
−1 1 −1

] (2.7.52)  

Species in each reaction can be obtained by multiplying matrix R with species matrix 

(2.7.48). 

Multiplication of reaction matrix R with formula matrix F results in a zero matrix. 

 𝐑𝐅 = 𝟎 (2.7.53)  

This can be verified: 

 

[
1 −1 0
0 1 −1
0 0 0

     
−1 1 0
−1 0 0
−1 1 −1

]

[
 
 
 
 
 
1 0 0
1 −1 1
1 −2 1

 

0 1 0
0 0 1
0 −1 1]

 
 
 
 
 

= [
0 0 0
0 0 0
0 0 0

] (2.7.54)  

The choice of components is arbitrary and has no effect on the formulation. If atoms 

[𝐶 𝐻 𝑂] are chosen as components then the formula matrix F becomes: 

 

𝐅 =

[
 
 
 
 
 
1 0 2
1 1 3
1 0 3

 

0 1 0
0 2 1
0 1 1]

 
 
 
 
 

 (2.7.55)  

The reaction matrix is independent of the choice of components such that it is the 

same as the previous one. Equation (2.7.53) still holds. 
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[
1 −1 0
0 1 −1
0 0 0

     
−1 1 0
−1 0 0
−1 1 −1

]

[
 
 
 
 
 
1 0 2
1 1 3
1 0 3

 

0 1 0
0 2 1
0 1 1]

 
 
 
 
 

= [
0 0 0
0 0 0
0 0 0

] (2.7.56)  

The transformation matrix TM is the transpose of the formulation matrix F  

 𝐓𝐌 = 𝐅𝑇 (2.7.57)  

By using the transformation matrix, the mass balance equation for each species can be 

transformed to each chosen component. Then the reaction term can be eliminated. 

 

In Di Toro‘s system, there are five species and their concentrations are defined as c 

with different suffixes. The reaction rates are r1, r2 and r3 for the three reactions in 

sequence. Assuming there is no diffusion, the original differential equations are: 

 

[
 
 
 
 
 
 
 
 
 
 
 
 
𝑑𝑐𝐶𝑂2
𝑑𝑡

𝑑𝑐𝐻𝐶𝑂3−

𝑑𝑡
𝑑𝑐𝐶𝑂32−

𝑑𝑡
𝑑𝑐𝐻+

𝑑𝑡
𝑑𝑐𝐻2𝑂

𝑑𝑡
𝑑𝑐𝑂𝐻−

𝑑𝑡 ]
 
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 

−𝑟1
𝑟1 − 𝑟2
𝑟2

𝑟1 + 𝑟2 + 𝑟3
−𝑟1 − 𝑟3
𝑟3 ]

 
 
 
 
 

 (2.7.58)  

When components are chosen as equation (2.7.49) multiplying both sides of equation 

(2.7.58) with its transformation matrix TM: 
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[
1 1 1
0 −1 −2
0 1 1

     
0 0 0
1 0 −1
0 1 1

]

[
 
 
 
 
 
 
 
 
 
 
 
 
𝑑𝑐𝐶𝑂2
𝑑𝑡

𝑑𝑐𝐻𝐶𝑂3−

𝑑𝑡
𝑑𝑐𝐶𝑂32−

𝑑𝑡
𝑑𝑐𝐻+

𝑑𝑡
𝑑𝑐𝐻2𝑂

𝑑𝑡
𝑑𝑐𝑂𝐻−

𝑑𝑡 ]
 
 
 
 
 
 
 
 
 
 
 
 

= [
1 1 1
0 −1 −2
0 1 1

     
0 0 0
1 0 −1
0 1 1

]

[
 
 
 
 
 

−𝑟1
𝑟1 − 𝑟2
𝑟2

𝑟1 + 𝑟2 + 𝑟3
−𝑟1 − 𝑟3
𝑟3 ]

 
 
 
 
 

 

(2.7.59)  

It is then found that reaction rates are cancelled out in the new equations: 

 

[
 
 
 
 
 
 

𝑑(𝑐𝐶𝑂2 + 𝑐𝐻𝐶𝑂3− + 𝑐𝐶𝑂32−)

𝑑𝑡
𝑑(−𝑐𝐻𝐶𝑂3− − 2𝑐𝐶𝑂32− + 𝑐𝐻+ − 𝑐𝑂𝐻−)

𝑑𝑡
𝑑(𝑐𝐻𝐶𝑂3− + 𝑐𝐶𝑂32− + 𝑐𝐻2𝑂 + 𝑐𝑂𝐻

−)

𝑑𝑡 ]
 
 
 
 
 
 

= [
0
0
0
] (2.7.60)  

When atoms [𝐶 𝐻 𝑂] are chosen as components then multiplying both sides of 

equation (2.7.58) with its transformation matrix TM: 
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[
1 1 1
0 1 0
2 3 3

     
0 0 0
1 2 1
0 1 1

]

[
 
 
 
 
 
 
 
 
 
 
 
 
𝑑𝑐𝐶𝑂2
𝑑𝑡

𝑑𝑐𝐻𝐶𝑂3−

𝑑𝑡
𝑑𝑐𝐶𝑂32−

𝑑𝑡
𝑑𝑐𝐻+

𝑑𝑡
𝑑𝑐𝐻2𝑂

𝑑𝑡
𝑑𝑐𝑂𝐻−

𝑑𝑡 ]
 
 
 
 
 
 
 
 
 
 
 
 

= [
1 1 1
0 1 0
2 3 3

     
0 0 0
1 2 1
0 1 1

]

[
 
 
 
 
 

−𝑟1
𝑟1 − 𝑟2
𝑟2

𝑟1 + 𝑟2 + 𝑟3
−𝑟1 − 𝑟3
𝑟3 ]

 
 
 
 
 

 

(2.7.61)  

Then the alternative equations are: 

 

[
 
 
 
 
 
 

𝑑(𝑐𝐶𝑂2 + 𝑐𝐻𝐶𝑂3− + 𝑐𝐶𝑂32−)

𝑑𝑡
𝑑(𝑐𝐻𝐶𝑂3− + 𝑐𝐻+ + 2𝑐𝐻2𝑂 + 𝑐𝑂𝐻−)

𝑑𝑡
𝑑(2𝑐𝐶𝑂2 + 3𝑐𝐻𝐶𝑂3− + 3𝑐𝐶𝑂32− + 𝑐𝐻2𝑂 + 𝑐𝑂𝐻

−)

𝑑𝑡 ]
 
 
 
 
 
 

= [
0
0
0
] (2.7.62)  

It is shown that the choice of components is not limited to get the alternative 

equations with zero reaction rates. Practically atoms are often used as components. In 

this case three new concentrations can be defined as: 

 𝑐𝐶 = 𝑐𝐶𝑂2 + 𝑐𝐻𝐶𝑂3− + 𝑐𝐶𝑂32− (2.7.63)  

 𝑐𝐻 = 𝑐𝐻𝐶𝑂3− + 𝑐𝐻+ + 2𝑐𝐻2𝑂 + 𝑐𝑂𝐻− (2.7.64)  

 𝑐𝑂 = 2𝑐𝐶𝑂2 + 3𝑐𝐻𝐶𝑂3− + 3𝑐𝐶𝑂32− + 𝑐𝐻2𝑂 + 𝑐𝑂𝐻− (2.7.65)  

 

At this point all the necessary equations for the polyelectrolyte gel swelling have been 

obtained from a wide range of literature and their applicability in the modelling has 

been discussed. The next chapter is about numerical solution. 
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 3 COMSOL Multiphysics 

From the literature discussed above, it is clear that the mathematical model of protein 

gel swelling will include a number of partial differential and algebraic equations. The 

numerical solution of these equations is not straightforward. In the author‘s ME thesis, 

the model equations of a gel swelling were set up and the method of MATLAB 

ODE15s was used. It was found that the system of equations was stiff. Therefore, in 

many cases numerical instability, almost certainly caused by the stiffness, led to a 

failure of the integration. Some of the stiffness arose from the need to make the 

protein dissociation dynamic and from the range of concentration gradients through 

the gel. Further, the sudden change in concentration at the gel boundary causes 

numerical inaccuracy in the solutions. Therefore, there is a need to develop the 

solution methods for this type of problem. 

 

A numerical software package was going to be used. The alternative of 

purpose-written software was rejected so that the research could concentrate on 

modelling and interpretation of numerical simulation results. Current software is 

based on two principle numerical methods: the finite element method (FEM) and the 

finite volume method (FVM). Both methods involve subdividing the solution domain 

into a large number of finite elements (FEM) or control volumes (FVM) and then 

solving governing equations. The FEM uses simple piecewise functions such as linear 

or quadratic to describe the local variations of unknown variables. Then the piecewise 

approximation functions for unknown variables are substituted into the equation and a 

residual is defined to measure the errors. The residuals are next minimised in some 

sense by multiplying them by a set of weighting functions and integrating. As a result 

a set of algebraic equations for the unknown coefficients of the approximation 

functions is obtained (Burden and Faires, 2005). COMSOL multiphysics uses FEM. 

COMSOL users are not able to change the numerical methods used. For the FVM, a 

formal integration of governing equations over all the control volumes of the solution 

domain is carried out. A variety of finite difference approximation schemes such as 
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the central differencing and the upwind differencing for the terms in the integrated 

equation including convection, diffusion and sources are applied. This converts the 

integral equations into a system of algebraic equations (Versteeg and Malalasekera, 

2007). The FVM is used by the computational fluid dynamics (CFD) software such as 

CFX/ANSYS. 

 

COMSOL Multiphysics version 3.5 was chosen as the numerical solution method in 

this thesis for two reasons. First of all, the governing equations for the gel swelling 

are not standard partial differential equations (PDEs). COMSOL Multiphysics has 

equation based mode which allows one to set up specific PDEs defined for a 

particular physical problem. Secondly, COMSOL Multiphysics is an integrated 

environment for solving systems of time dependent, or stationary second order in 

space, PDEs in one, two and three dimensions. Such equations may be coupled in an 

almost arbitrary way. This is well suited to this type of gel swelling problem. CFD 

packages cannot easily solve a user-defined PDE system with algebraic equations. 

3.1  Introduction 

COMSOL Multiphysics is a powerful interactive environment for solving a variety of 

problems in science and engineering based on PDEs. A variety of model libraries is 

supplied, and it is possible to extend conventional models into other domains to solve 

problems involving coupled phenomena. Although an in-depth knowledge of 

mathematics and especially PDEs is not a prerequisite for program use, it would 

certainly help in not only setting up the problems but also in interpreting the results 

and extending use to the fullest. 

 

By employing built-in modes (for selection and display of relevant parts of the model), 

it is possible to build more complicated structures and avoid defining each equation. 

These capabilities may be accessed by the stand-alone product through a graphical 

user interface (GUI), or by programming through the MATLAB interface. In the 
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programming environment, MATLAB, C, C++, and FORTRAN programs may be 

used to define properties, loads, sources and boundary conditions (BC). COMSOL 

uses the finite element method together with adaptive meshing error control with a 

variety of numerical solvers while solving the PDEs. The FEM process in COMSOL 

is presented in Figure 3.1. For linear systems, both direct and iterative solvers (using a 

range of preconditioners) are available. 

 

Figure 3.1 The finite element method as implemented in COMSOL 

 

The modelling process in COMSOL Multiphysics includes geometry, physics, mesh, 

solver and finally post-processing. The first screen appearing when opening 

COMSOL is called the Model Navigator (Figure 3.2), where the user starts the 

modeling and controls the program processes. This area allows the selection of the 

space dimension and application modes for new models, opening of existing models, 

or entering the model library areas. The program is subtitled multiphysics modeling as 

this GUI allows one to build and solve models by using predefined ‗physics modes,‘ 

PDE modes, or a combination of these. The modes are like templates where the user 

can define properties and boundary conditions and then have the software create the 

PDEs. This GUI also has a set of computer assisted design (CAD) tools for geometry 

modeling in 1-D, 2-D, and 3-D. Alternatively, for some complex problems, the 

geometry can be imported from professional CAD software. Various dialog boxes 

will display the values of the variables and the equation used (Figure 3.3). There is 

much detail here and the coefficients for each term in the model can be quickly 
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displayed. Once the multiphysics mode is entered and the type of problem defined, 

the initial and boundary conditions may be set, so that the equations can be solved and 

graphics generated (Figure 3.4). 

 

Figure 3.2 Starting a new COMSOL model 

 

 

Figure 3.3 Equation systems display in COMSOL 
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Figure 3.4 2-D surface plot example: temperature distribution in a 2-D plate resulting from external 

convection heating and internal conduction 

 

3.2  Using the general form of PDE in COMSOL 

COMSOL can solve systems of coupled PDEs. The specified PDEs may be non-linear 

and time dependent and act on a 1D, 2D or 3D geometry. The PDEs and boundary 

values can be represented by three forms: the coefficient form, the general form and 

the weak form (COMSOL Multiphysics 3.5, 2008). COMSOL also provides a number 

of predefined models for many standard problems. These models consist of 

predefined templates and user interfaces already set up with equations and variables 

for specific areas of physics in order to hide much of the complex details of modelling 

by equations. Although predefined models are convenient, equation based modelling 

was used in this thesis. For one reason, the pre-defined Maxwell-Stefan diffusion 

model does not cover our coupled system such that diffusion potential and swelling 

pressure are not included. For another reason, it would certainly help in not only 

understanding the underlying physics of the problem but also in interpreting the 

results and extending use to the fullest. 
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Equation based physical problems can be defined by three forms in COMSOL: 

coefficient form, general form and weak form. Because the general form will be used, 

we will only discuss the general form of the PDEs in COMSOL. 

The general form reads: 

 

{
 
 

 
 𝑒𝑎

𝜕2𝑢

𝜕𝑡2
+ 𝑑𝑎

𝜕𝑢

𝜕𝑡
+ ∇ ∙ Γ = 𝐹   in  domain

−𝑛 ∙ Γ = 𝐺 + (
𝜕𝑅

𝜕𝑢
*
𝑇

𝜇     on boundary

0 = 𝑅       on boundary

 (3.2.1)  

where u is the unknown solution of any number of variables over time and space, n is 

the outward unit normal vector on boundary and ea, da, Γ, F, G, R and μ are 

coefficients. 

 

The first equation in equation (3.2.1) is the PDE. The second is a generalised 

Neumann boundary condition and the third is a Dirichlet boundary condition. 

Dirichlet conditions often represent constraints.   

 

The coefficients Γ and F can be functions of the space, time, the solution u and its 

gradient. G and R can be functions of the space, time and the unknown, u. F and G 

and R are scalar, while Γ represents the flux vector. The variable μ is the Lagrange 

multiplier. 

 

To solve a problem within COMSOL Multiphysics, we must perform the following 

steps: 

 Define the geometry of interest including discretisation 

 Set the equation coefficients 

 Specify the boundary conditions 

 Set solution parameters and solve the problem 

 Perform post processing and analysis of the result 

 



 99 

Two cases are presented to illustrate how COMSOL Multiphysics can be used to solve 

a variety of general problems of interest. 

 

Case 1: Solving linear systems of ODEs 

Consider the isomerisation reactions: 

 
𝐴

𝑘1
→

𝑘2
←
𝐵

𝑘3
→

𝑘4
←
𝐶 (3.2.2)  

First order kinetics leads to the following system of ODEs: 

 𝑑𝑐𝐴
𝑑𝑡
= −𝑘1𝑐𝐴 + 𝑘2𝑐𝐵

𝑑𝑐𝐵
𝑑𝑡

= 𝑘1𝑐𝐴 − 𝑘2𝑐𝐵 − 𝑘3𝑐𝐵 + 𝑘4𝑐𝑐

𝑑𝑐𝑐
𝑑𝑡
= 𝑘3𝑐𝐵 − 𝑘4𝑐𝑐

 (3.2.3)  

where c are concentrations for three components A, B and C, and k represent reaction 

rates with k1=1, k2=0, k3=2 and k4=3. 

 

In the Model Navigator, a one-dimensional (1D), PDE general form is chosen with 

dependent variables: cA, cB and cC representing the concentrations of three 

components. Users can freely choose the variable names according to the problems. 

For a new model, COMSOL Multiphysics automatically puts users in Draw Mode. 

Since this is a 1D geometry case and the problem is space independent, a line of any 

dimension will do and the line of 1 dimension is chosen for its simplicity. Constants 

of the equation, reaction rates in this case, can be set in Constants. Then, the physics 

of the problem needs setting. Comparing equation (3.2.3) with the PDE general form 

equation (3.2.1), Γ is set to zeros for each variable. The setting of F is shown in Figure 

3.5. The problem starts with pure cA=1, thus the initial setting is needed with cA(0)=1. 

Because the current problem is only time dependent, the boundaries have Neumann 

boundary conditions (Figure 3.6). Once the geometry, equation coefficients and BCs 

have been specified, it is now ready to discretise the independent variables, that is, to 

create a finite element mesh for the geometry of interest. For this 1D problem, this is 

relatively straightforward. For more complex 2D and 3D geometries, this step may 
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require more care to get an accurate solution throughout the full system. COMSOL 

Multiphysics has a number of user options for refining the mesh grid for particularly 

difficult problems. Many general PDE problems are difficult to solve, but this one is 

not. This problem is solved with the time dependent solver with a final of 10 seconds. 

For more difficult problems, the solver parameters and the solver manager need to be 

modified. After COMSOL has solved the problem of interest, the Postprocessing 

Mode can be used to visualise and analyse the system. In this case, the concentration 

of component A is plotted (Figure 3.7).  

 

 
Figure 3.5 Equation setting 

 

 

Figure 3.6 Boundary conditions 
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Figure 3.7 The concentration of component A plot versus time 

 

 

Case 2: Diffusion in a Stefan tube 

The second example is more complicated than the first one and it was the initial try to 

solve a Maxwell-Stefan diffusion problem using the COMSOL PDE general form. 

The detailed description of the problem can be found in Taylor and Krishna (1993, 

p21-23). The model represents steady state diffusion of acetone and methanol through 

stagnant air in a Stefan tube. The model description will be presented in Appendix A. 

The model equations are simply presented as: 

 ∇ ∙ 𝑁𝑖 = 0

𝑑𝑥𝑖
𝑑𝑧
=∑

𝑥𝑖𝑁𝑗 − 𝑥𝑗𝑁𝑖

𝑐𝑡𝐷𝑖𝑗

3

𝑗=1
𝑗≠𝑖

𝑁3 = 0

 (3.2.4)  

where N is the molar diffusion fluxes an x is the mole fraction of the components. 

We are already familiar with the matrix form: 

 ∇ ∙ 𝑁𝑖 = 0

−𝑐𝑡(∇𝑥) = [𝐵](𝑁)
 (3.2.5)  

with 
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𝐵𝑖𝑖 =∑
𝑥𝑘
𝐷𝑖𝑘

3

𝑘=1
𝑘≠𝑖

𝐵𝑖𝑗 = −
𝑥𝑖
𝐷𝑖𝑗

 (3.2.6)  

This is a one-dimensional, PDE general form problem with dependent variables x1, x2, 

N1 and N2 representing different mole fraction (x) and molar diffusion flux (N) 

respectively. In the same procedure as in Case 1, the diffusion in a Stefan tube can be 

solved. The following (Figure 3.8-3.12) presents some of the settings involved in this 

modelling. 

 

Figure 3.8 Constant setting 

 

 
Figure 3.9 Variable setting 

 

 

Figure 3.10 Equation setting for Γ 
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Figure 3.11 Equation setting for F 

 

 

Figure 3.12 Dirichlet boundary setting 

 

The COMSOL numerical results are obtained with 120 meshes and then are compared 

with analytical results. With 60 meshes the results were clearly different from the 

exact values. The numerical fluxes are: 𝑁1 = 1.7831 × 10
−3 and 𝑁2 = 3.1282 ×

10−3 mol/m
2
s. They are in excellent agreement with the exact values (𝑁1 = 1.783 ×

10−3 and 𝑁2 = 3.127 × 10
−3 mol/m

2
s) given by Taylor and Krishna. The results are 

plotted in Figure 3.13. 
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Figure 3.13 Composition profiles in the Stefan diffusion tube 

3.3  COMSOL solutions for GMS diffusion in electrolytes 

In the author‘s ME thesis, the model to simulate the diffusion of HCl through a 

membrane with the length of 0.001 m was set up and solved by MATLAB ODE15s 

solver. In this example, we want to check the ability of COMSOL Multiphysics to 

deal with difficult problems and in this case it is the diffusion potential which is not 

explicitly defined and difficult to solve. HCl is treated as two components: H
+
 and Cl

-
. 

Thus, the system is composed of three components: H
+
 (1), Cl

-
 (2) and water (3).   

The model equations are: 

 𝜕𝑐𝑖
𝜕𝑡
+ ∇ ∙ 𝑱𝑖 = 0    𝑖 = 1,2

(𝑱) = −𝑐𝑡[𝐵]
−1 (∇𝑥 +

𝑥𝑖𝑧𝑖
𝑅𝑇

𝔍∇𝜑)
 (3.3.1)  

Matrix, B, is described as: 
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𝐵𝑖𝑖 =∑
𝑥𝑗

𝐷𝑖𝑗

3

𝑗=1
𝑗≠𝑖

    𝑖 = 1,2

𝐵𝑖𝑗 = −
𝑥𝑖
𝐷𝑖𝑗
  𝑖, 𝑗 = 1,2

𝐵𝑖3 = 𝑐𝑖𝑧𝑖  𝑖 = 1,2
𝐵3𝑗 = 𝑧𝑗   𝑗 = 1,2

𝐵33 = 0

 (3.3.2)  

xi is the mole fraction of component i, zi is the charge number of component i and ci is 

the concentration of component i. zi is the parameter with +1 and -1. 

 

If the matrix B needs to be inverted there is no way to do this in the COMSOL GUI 

and COMSOL script must be used. Since the matrix inversion will be done externally 

of the solver this will be a slow process. However we can use an alternative equation: 

 (∇𝑥 +
x ∙ z

𝑅𝑇
𝔍∇𝜑) = −

1

𝑐𝑡
[𝐵](𝑱) (3.3.3)  

when i =3, ∇x3=0 and for convenience J3, which is not a real flux, is introduced: 

 𝑱3 =
ℑ

𝑅𝑇
∇𝜑 (3.3.4)  

Here ℑ is the Faraday‘s constant and φ is the diffusion potential. 

 

Because this is an electrolyte system and a diffusion potential is included in the 

equation, the Maxwell-Stefan diffusion predefined model in COMSOL cannot be used. 

In order to get a COMSOL solution, the PDE equations in COMSOL are: 

 

[
 
 
 
 
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0]

 
 
 
 
𝜕

𝜕𝑡

[
 
 
 
 
𝑐1
𝑐2
𝑱1
𝑱2
𝑱3]
 
 
 
 

+ ∇ ∙

[
 
 
 
 
𝑱1
𝑱2
0
0
0 ]
 
 
 
 

=

[
 
 
 
 

0
0

𝑐𝑡∇𝑥1 + 𝐵11𝑱1 + 𝐵12𝑱2 +𝐵13𝑱3
𝑐𝑡∇𝑥2 + 𝐵21𝑱1 + 𝐵22𝑱2 + 𝐵23𝑱3

𝐵31𝑱1 + 𝐵32𝑱2 + 𝐵33𝑱3 ]
 
 
 
 

*
0 0
0 0

+
𝜕

𝜕𝑡
*
𝜑
𝑑𝜑+ + ∇ ∙ *

0
0
+ = [

∇𝜑 − 𝑑𝜑

𝑱3 −
ℑ

𝑅𝑇
𝑑𝜑
]

 (3.3.5)  

For the boundary conditions and initial conditions, readers can refer to the author‘s 

ME thesis (Lu, 2007). The COMSOL Multiphysics solution is then compared with 

MATLAB solution in Figure 3.14: 
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Figure 3.14 The concentration profile of H
+
 across the membrane 

Left: MATLAB solution (Lu, 2007).  Right: COMSOL solution 

 

Then one more component was added and the model was set up to simulate the 

diffusion of HCl and NaCl through the distance of 0.001m. There are four 

components in the model: H
+
(1), Cl

-
(2), Na

+
(3) and H2O(4).   

The model equations are: 

 𝜕𝑐𝑖
𝜕𝑡
+ ∇ ∙ 𝑱𝑖 = 0    𝑖 = 1,2,3

(𝑱) = −𝑐𝑡[𝐵]
−1 (∇𝑥 +

𝑥𝑖𝑧𝑖
𝑅𝑇

𝔍∇𝜑)
 (3.3.6)  

in which 

 

𝐵𝑖𝑖 =∑
𝑥𝑗

𝐷𝑖𝑗

4

𝑗=1
𝑗≠𝑖

    𝑖 = 1,2,3

𝐵𝑖𝑗 = −
𝑥𝑖
𝐷𝑖𝑗
  𝑖, 𝑗 = 1,2,3

𝐵𝑖4 = 𝑐𝑖𝑧𝑖  𝑖 = 1,2,3
𝐵4𝑗 = 𝑧𝑗   𝑗 = 1,2,3

𝐵44 = 0

 (3.3.7)  

J4 is also not a real flux,  𝐽4 =
ℑ

𝑅𝑇
∇𝜑, and there are 7 variables: xi (there are 3), Ji 

(there are 3) and ∇φ with 7 equations. In COMSOL an additional equation is required 

to obtain φ as seen in equations (3.3.8). 

 

In COMSOL the PDE setting is: 

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0 0.0002 0.0004 0.0006 0.0008 0.001

C
o

n
ce

n
tr

at
io

n
 o

f 
H

+ (
m

o
l/

L)
 



 107 

 

[
 
 
 
 
 
 
 
 
1 0 … … … … … … 0
0 1 0 ⋮
⋮ 1 ⋮
⋮ 0 ⋮
⋮ 0 ⋮
⋮ 0 ⋮
⋮ 0 ⋮
⋮ 0 ⋮
0 … … … … … … … 0]

 
 
 
 
 
 
 
 

𝜕

𝜕𝑡

[
 
 
 
 
 
 
 
 
𝑐1
𝑐2
𝑐3
𝑱1
𝑱2
𝑱3
𝑱4
𝜑
𝑑𝜑]
 
 
 
 
 
 
 
 

+ ∇ ∙

[
 
 
 
 
 
 
 
 
𝑱1
𝑱2
𝑱3
0
0
0
0
0
0 ]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 

0
0
0

𝑐𝑡∇𝑥1 + 𝐵11𝑱1 + 𝐵12𝑱2 +𝐵13𝑱3 + 𝐵14𝑱4
𝑐𝑡∇𝑥2 + 𝐵21𝑱1 + 𝐵22𝑱2 +𝐵23𝑱3 + 𝐵24𝑱4
𝑐𝑡∇𝑥3 + 𝐵31𝑱1 + 𝐵32𝑱2 +𝐵33𝑱3 + 𝐵34𝑱4

𝐵41𝑱1 + 𝐵42𝑱2 + 𝐵43𝑱3 + 𝐵44𝑱4
∇𝜑 − 𝑑𝜑

𝑱4 −
ℑ

𝑅𝑇
𝑑𝜑 ]

 
 
 
 
 
 
 
 
 

 

(3.3.8)  

The details of this simulation can be found in Appendix C. Figures 3.15 and 3.16 

show the concentration profiles of three ions in the centre segment of the membrane 

over 800 seconds. The comparison between the COMSOL Multiphysics and 

MATLAB solution shows almost identical concentration results. 

 
Figure 3.15 MATLAB solutions of concentrations in the centre segment of the membrane over 

800 seconds 
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Figure 3.16 COMSOL solution for the same problem of Figure 3.15 

 

In the Sections 2.2.2 and 2.2.3, two diffusion theories were presented. The MS 

diffusion theory was chosen over the Fick‘s diffusion theory because the latter does 

not include other driving forces such as diffusion potential. To show the inadequacy of 

the Fick‘s diffusion theory, we will simulate the above same problem by using Fick‘s 

theory with no ion-ion interactions and then compare the results with those obtained 

by Maxwell-Stefan diffusion theory. 

 

The model equations by Fick‘s diffusion write: 

 𝜕𝑐𝑖
𝜕𝑡
+ ∇ ∙ 𝑱𝑖 = 0    𝑖 = 1,2,3

(𝑱) = −𝑐𝑡[𝐷]∇(𝑥)
 (3.3.9)  

For the comparison, the initial conditions are: 

 𝑐𝐻+0 = 18 𝑐𝐶𝑙−0 = 20 𝑐𝑁𝑎+0 = 2  mol/m
3 (3.3.10)  

The left boundary is set to insulation symmetry. The right boundary has the 

concentration: 

 𝑐𝐻+ = 18 𝑐𝐶𝑙−0 = 48 𝑐𝑁𝑎+0 = 30  mol/m
3 (3.3.11)  
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Figures 3.17, 3.18 and 3.19 show the comparison of concentrations in the centre 

between the Maxwell-Stefan diffusion and Fickian diffusion models. 

 

Figure 3.17 Concentration comparison of H
+
 

 

 

Figure 3.18 Concentration comparison of Cl
-
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Figure 3.19 Concentration comparison of Na
+
 

 

The behaviours of Cl
-
 and Na

+
 obtained by Fick and Maxwell-Stefan computations 

are very similar, as one can see on Figure 3.18 and 3.19. Nevertheless, there are some 

significant variations on the values of H
+ 

shown by Figure 3.17. These variations can 

be explained by the diffusion potential. The high concentration gradients of Cl
-
 and 

Na
+
 generate strong fluxes. If the diffusion of Cl

-
 is a little faster than that of Na

+
, the 

electroneutrality condition of the region is not satisfied any more. An electrical 

potential across the region is then set up due to the excess of Cl
-
 over Na

+
 and this 

electrostatic force will drag H
+
 moving with Na

+
 to recover the electroneutrality 

condition. This cannot be explained by Fick‘s diffusion theory. By Fick‘s diffusion 

theory H
+
 will not move because there is no concentration gradient for H

+
 across the 

region. Wesselingh and Krishna (2000) have also observed that in a solution of 

sodium chloride and hydrogen chloride, sodium will diffuse against its gradient, in the 

direction opposite to what we expect from Fick‘s law. 

 

In summary COMSOL Multiphysics has some advantages in solving PDEs over other 

softwares. Firstly, COMSOL Multiphysics is flexible. Users can freely define their 

own equations in its general form. The above examples were all solved by using 

COMSOL Multiphysics general form. Secondly COMSOL Multiphysics can solve a 
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wide range of problems. It can solve linear systems of ODEs. This is illustrated by the 

isomerisation reactions in Section 3.2. Most importantly, COMSOL Multiphysics has 

the ability to solve multicomponent diffusion problems based on the GMS equations. 

It can solve the diffusion of three gases in a Stefan tube as shown in Section 3.2. It 

can also solve a multicomponent diffusion problem in electrolytes with an implicitly 

defined diffusion potential shown by the diffusion of HCl and NaCl. Because the 

GMS equations in electrolytes are the basic equations in the protein gel modelling, 

COMSOL Multiphysics version 3.5 was chosen as the numerical tool for the 

remainder of this project.   
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 4 The mathematical model of protein gel swelling 

In this chapter, the mathematical model of protein gel swelling will be set up. From 

the discussion in Chapter 2, it can be seen that the model will include molar diffusion, 

chemical reaction and mechanical structures. This multiphysical process needs a 

suitable mathematical model that can reflect the inside physics and at the same time 

avoid unnecessarily over-complicating the problem. Therefore, the protein gel under 

study has a simple geometry and a 2-dimensional rectangular gel is considered. The 

system considered is a two phase system: a protein matrix immersed in a solution of 

NaOH and NaCl (or HCl and NaCl). The schematic picture is shown in Figure 4.1. 

 

Figure 4.1 Schematic of protein gel immersed in a solution 

 

The whole physical and chemical process involved can be described as follows. The 

solution components, H2O, OH
–
, H

+
, Na

+
 and Cl

–
, diffuse into the protein gel. The 

protein in the gel dissociates losing or gaining hydrogen ions (H
+
) depending on the 

pH of the solution. Hydrogen ions react with hydroxide ions (OH
-
) and then extra 

water is produced. This extra water, in association with water diffusing into the gel, 

will cause the gel network structure to swell. This is a multicomponent system with 7 

species in the system: H
+
, OH

-
, H2O, Cl

–
, Na

+
, total protein and undissociated 

hydrogen ion in the protein (HProtein). 

 

Although we want as few assumptions as possible in the model, there are still some 

assumptions. The frictional forces experienced by the gel are negligible because the 

 Protein Bulk 
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solution surrounding the gel acts as a lubricant. The system is at the constant 

temperature and external pressure.  

 

As ions move into a charged gel network, they may react with the fixed charged side 

groups as shown in Figure 4.2. That is, diffusing H
+
 or OH

-
 in solvent can react with 

corresponding basic or acidic structures on the network, and such diffusion-reaction 

can significantly slow down the overall ion transport process (Lee, 1996).  

 

Figure 4.2 Reaction of H
+
 with basic structure of gel network (A- represents charged protein) 

 

The protein dissociation reaction can be written as: 

 Protein with H ↔ Protein− + 𝐻+    𝑟1  

and 

 𝐻+ + 𝑂𝐻− ↔ 𝐻2𝑂   𝑟2  

in which the rates, r, are the reaction rates to the right.   

 

The dissociation equilibria for the two reactions are: 

 𝐾𝑎 =
[𝐻+][𝑃𝑟𝑜𝑡𝑒𝑖𝑛−]

[𝐻𝑃𝑟𝑜𝑡𝑒𝑖𝑛]

𝐾𝑤 = [𝐻
+][𝑂𝐻−]

 (4.1)  

 

There are 7 species in the system: H
+
, OH

-
, H2O, Cl

–
, Na

+
, total protein and HProtein. 

Their concentrations are denoted by c1, c2, c3, c4, c5, c6 and c7 respectively. Their 

diffusion fluxes relative to the protein matrix are J1, J2, J3, J4, J5, J6 and J7. Since no 

protein molecule diffuses relative to itself, J6 and J7 are equal to zero. For 
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convenience, some important variables and parameters are tabulated in Table 4.1. 

Table 4.1 Modelling variables and parameters 

species H
+
 OH

-
 H2O Cl

–
 Na

+
 

Total 

Protein 

HProtein  

concentration c1 c2 c3 c4, c5 c6 c7 

reaction rate r1-r2 -r2 r2 0 0 0 -r1 

diffusion flux J1 J2 J3 J4 J5 J6=0 J7=0 

charges +1 -1 0 -1 +1 zp 0 

 

In the following parts, a detailed mathematical model consisting of diffusion, mass 

balance, and mechanical swelling will be presented. Figure 4.3 shows the model 

components. 

 

 

 

 

 

 

Figure 4.3 Model components 

4.1  Diffusion model 

As discussed in Chapter 2, the generalised Maxwell-Stefan equation will be used to 

describe the diffusion process. Although many studies have been based on Fickian 

diffusion, a proof of the inadequacy of Fick‘s diffusion theory has been given in 

Chapter 3. From equation (2.3.10) in Chapter 2, the generalised Maxwell-Stefan 

equation
 
for electrolytes can be written for each of the n components as: 

Composition 

Pressure 
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−
𝑥𝑖
𝑅𝑇
∇𝑇,𝑃𝜇𝑖 +

(𝜔𝑖 − 𝑐𝑖𝑉̅𝑖)

𝑐𝑡𝑅𝑇
∇𝑃 −

𝑥𝑖𝑧𝑖
𝑅𝑇

𝔍∇𝜑 =∑
𝑥𝑗𝑱𝑖

𝑛 − 𝑥𝑖𝑱𝑗
𝑛

𝑐𝑡𝐷𝑖𝑗

𝑛

𝑗=1
𝑗≠𝑖

  𝑖

= 1,2, … , 𝑛 

(4.1.1)  

where  xi - mole fraction of component i 

ωi - mass fraction of component i 

i - chemical potential,  

R - idea gas constant, 8.31414 [J/mol K] 

T - temperature [K] 

P - system pressure, [Pa] 

𝑉̅𝑖 - partial molar volume of component i [m
3
/mol] 

zi - charge number of component i 

 - Faraday‘s constant, 9.65×10
4 

[C/mol]  

ϕ - electrical potential [V] 

ct - total molar concentration [mol/m
3
] 

Ji
n
- molar flux of component i relative to component n [mol/m

2
 s] 

Dij- Maxwell-Stefan diffusivity between species i and j [m
2
/s] 

 

Looking at equation (4.1.1), one can see that the generalised Maxwell-Stefan (GMS) 

equation is very flexible. It does yield Fick‘s equation as a limiting case for some 

simple problems, such as dilute and thermodynamically ideal solutions. It can also 

take into account effects such as viscous flow, electrostatic potential, pressure, and 

thermodynamic activity. 

 

Therefore, the diffusion flux of component i, Ji
n
, is governed by the Generalised 

Maxwell-Stefan equations (4.1.1). This can be expressed in matrix form: 

 
Γ∇x +

(c ∙ V̅ − ω)

𝑐𝑡𝑅𝑇
∇𝑃 +

x ∙ z

RT
𝔍∇𝜑 = −

1

𝑐𝑡
B𝐉𝑛 (4.1.2)  

where  is a n-1 square matrix.  
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𝛤𝑖𝑗 = 𝛿𝑖𝑗 + 𝑥𝑖

𝜕 ln 𝛾𝑖
𝜕𝑥𝑗

|
𝑇,𝑃,∑

 (4.1.3)  

Here i is the activity coefficient and ij equals one only when i=j. In the case of an 

ideal solution, the activity coefficients are unity and thus  is an identity matrix. 

B is an n-1 square matrix with elements: 

 
𝐵𝑖𝑖 =∑

𝑥𝑗

𝐷𝑖𝑗
𝑗≠𝑖

  𝑖 = 1,… , 𝑛 − 1

𝐵𝑖𝑗 = −
𝑥𝑖
𝐷𝑖𝑗
  𝑖 ≠ 𝑗

 (4.1.4)  

It can be assumed that initially a system is electrically neutral everywhere: 

 
∑𝑧𝑖𝑥𝑖(𝑡0)

𝑖

= 0 (4.1.5)  

and to retain neutrality there must be no net current: 

 
∑𝑧𝑖𝑱𝑖

𝑛

𝑖

= 0 (4.1.6)  

Krishna (1987) combined equations (4.1.2) and (4.1.6) to give an augmented matrix 

from which Ji and ∇ϕ could be determined. 

 

[
−𝑐𝑡 (Γ∇x +

(c ∙ V̅ − ω)

𝑐𝑡𝑅𝑇
∇𝑃)

…………………………………
0

] = [
[B] ⋮ [c ∙ z]

⋯⋯⋯ ⋮ ⋯⋯⋯
[z] ⋮ 0

] [

[𝐉𝑛]
⋯⋯
𝔍

𝑅𝑇
∇𝜑
] (4.1.7)  

In the system concerned, diffusion only happens when electrolytes such as NaOH and 

NaCl diffuse into and out the system. The protein matrix is considered as a reference 

structure and no protein molecule diffuses into the solution from the matrix. Therefore, 

equation (4.1.7) does not apply to protein. 

 

One advantage of the Maxwell-Stefan equation is its ability to deal with 

thermodynamic non-idealities with the matrix Г. If the solution is non-ideal, activity 

coefficients are required to calculate Γ by equation (4.1.3). Many researchers have 

shown that ideal solution modelling can get diffusion behaviours in good agreement 

with experiments and thus in most models found in literature, an ideal solution is 

assumed. However in this research this assumption was not made as doing so would 
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defeat the purpose of using the Maxwell-Stefan equations. A thorough explanation of 

how to obtain the thermodynamic matrix can be found in the appendix of Taylor and 

Krishna (1993) and some binary and multicomponent models are also given. The 

procedure of obtaining the matrix Γ is reproduced in the following section. 

4.2  Thermodynamic matrix Γ 

In GMS diffusion, the elements of the thermodynamic matrix are defined by equation 

(4.1.3): 

 
𝛤𝑖𝑗 = 𝛿𝑖𝑗 + 𝑥𝑖

𝜕 ln 𝛾𝑖
𝜕𝑥𝑗

|
𝑇,𝑃,∑

 (4.2.1)  

The symbol ∑ is used to indicate that the differentiation of lnγi with respect to mole 

fraction xj is to be carried out while keeping the mole fractions of all other 

components constants except the nth. The mole fraction of species n must be 

eliminated using the fact that the summation of xi is unity. 

 

Let Q be the dimensionless excess Gibbs energy: 

 
𝑄 =

𝐺𝐸𝑋

𝑅𝑇
=∑𝑥𝑖 ln 𝛾𝑖

𝑛

𝑖=1

 (4.2.2)  

γi is defined by: 

 
ln 𝛾𝑖 =

𝜕(𝑛𝑡𝑄)

𝜕𝑛𝑖
|
𝑇,𝑃,𝑛𝑘,𝑘≠𝑖=1,…𝑛

 (4.2.3)  

where ni is the number of moles of species i in solution and nt is the total number of 

moles in the mixture. 

 
𝑛𝑡 =∑𝑛𝑖

𝑛

𝑖=1

 (4.2.4)  

The partial derivative in equation (4.2.3) may be expanded to give: 

 
ln 𝛾𝑖 = 𝑄 + 𝑛𝑡

𝜕𝑄

𝜕𝑛𝑖
|
𝑇,𝑃,𝑛𝑘,𝑘≠𝑖=1,…𝑛

 (4.2.5)  

It is useful to replace the partial derivative of Q with respect to the number of moles 
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with the partial derivatives of Q with respect to the mole fractions xi defined by: 

 𝑥𝑖 =
𝑛𝑖
𝑛𝑡

 (4.2.6)  

A change in the number of moles of species i changes the mole fractions of all species, 

not just the mole fraction of species i. Thus we may express the partial derivatives in 

equation (4.2.5) as: 

 𝜕𝑄

𝜕𝑛𝑖
=∑𝑄𝑗

𝜕𝑥𝑗

𝜕𝑛𝑖
|
𝑛𝑘

𝑛

𝑗=1

 (4.2.7)  

where 

 
𝑄𝑗 =

𝜕𝑄

𝜕𝑥𝑗
|
∑

 (4.2.8)  

The symbol ∑ is to emphasise that the mole fractions of all species except the jth are 

kept constant while performing the differentiation. The requirement that the mole 

fractions sum to unity is not used to eliminate any mole fraction before the 

differentiation has been carried out. 

 

The mole fraction derivatives may be obtained by differentiating equation (4.2.6): 

 𝜕𝑥𝑗

𝜕𝑛𝑖
|
𝑛𝑘

=
𝛿𝑖𝑗 − 𝑥𝑗

𝑛𝑡
 (4.2.9)  

with δij is the Kronecker delta. 

 

By combining equation (4.2.5) with equations (4.2.7) and (4.2.9) the expression for 

the activity coefficients γi can be obtained: 

 
ln 𝛾𝑖 = 𝑄 + 𝑄𝑖 −∑𝑥𝑘𝑄𝑘

𝑛

𝑘=1

 (4.2.10)  

The derivatives of lnγi with respect to mole fraction xj are obtained on differentiation 

of the above equation as: 

 𝜕 ln 𝛾𝑖
𝜕𝑥𝑗

|
∑

= 𝑄𝑖𝑗 −∑𝑥𝑘𝑄𝑘𝑗

𝑛

𝑘=1

 (4.2.11)  

in which 
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𝑄𝑖𝑗 =

𝜕𝑄𝑖
𝜕𝑥𝑗
|
∑

 (4.2.12)  

They are the partial derivatives of Qi with respect to mole fraction xj. The Qij are 

symmetric: 

 𝑄𝑖𝑗 = 𝑄𝑗𝑖 (4.2.13)  

Equation (4.2.11) provides the unconstrained mole fraction derivatives of lnγi, and the 

differentiation of Qi must be done with the fact that mole fractions sum to unity in 

order to simplify the expression for Qi. The constrained mole fraction derivatives 

needed in the thermodynamic matrix Γij are given in terms of the unconstrained 

derivatives by: 

 𝜕 ln 𝛾𝑖
𝜕𝑥𝑗

|
∑

=
𝜕 ln 𝛾𝑖
𝜕𝑥𝑗

|
∑

−
𝜕 ln 𝛾𝑖
𝜕𝑥𝑛

|
∑

= 𝑄𝑖𝑗 − 𝑄𝑖𝑛 −∑𝑥𝑘(𝑄𝑘𝑗 − 𝑄𝑘𝑛)

𝑛

𝑘=1

 (4.2.14)  

Finally, the elements of the thermodynamic matrix are given by: 

 
𝛤𝑖𝑗 = 𝛿𝑖𝑗 + 𝑥𝑖 {𝑄𝑖𝑗 − 𝑄𝑖𝑛 −∑𝑥𝑘(𝑄𝑘𝑗 − 𝑄𝑘𝑛)

𝑛

𝑘=1

} (4.2.15)  

The Pitzer‘s model discussed in Chapter 2 is based on molalities. However, in order to 

obtain thermodynamic matrix in Maxwell-Stefan diffusion it is necessary to develop 

an equation based on a mole fraction rather than on a molality. That means a 

mole-fraction-based excess Gibbs free energy is needed. Such mole-fraction-based 

model has been developed by Pitzer and his co-workers. The excess Gibbs energy of 

the mixed solution is assumed to consist of two parts: short-range force terms 

accounted for by a Margules expansion and a long range force by 

Pitzer-Debye-Hückel term. A general Margules expansion is based on three suffixes:  

 
𝑄 =

𝐺𝑆

𝑅𝑇
=∑∑𝑥𝑛′𝑥𝑛𝑊𝑛′,𝑛

𝑛𝑛′

+∑∑∑𝑥𝑛𝑥𝐼𝐹𝑐𝐹𝑎𝑊𝑛,𝑐𝑎
𝑎𝑐𝑛

+
𝑥𝐼
2

2
[∑∑∑𝐹𝑐′𝐹𝑐𝐹𝑎𝑊𝑐′𝑎,𝑐𝑎

𝑎𝑐𝑐′

+∑∑∑𝐹𝑎′𝐹𝑎𝐹𝑐𝑊𝑐𝑎′,𝑐𝑎

𝑐𝑎𝑎′

] 

(4.2.16)  

xn and xn’ represent the mole fractions of neutral species, and xI is the total mole 
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fraction of ions. For the ions the cation fractions are Fc, Fc’, the anion fractions are Fa, 

Fa’, and W’s are binary and ternary parameters. Technically all of the binary 

parameters can be determined from two component systems. Presumably all ternary 

parameters could be determined from three-component systems. However, practically 

most of these parameters are not available. 

 

In this study, moderate concentrations are involved and to avoid many unknown 

parameters it is reasonable to only consider the long range Gibbs excess energy. If the 

excess Gibbs energy is described by Pitzer-Debye-Hückel: 

 
𝑄 =

𝐺𝐷𝐻

𝑅𝑇
= −

4𝐴𝑥𝐼𝑥
𝑏𝑥

𝑙𝑛 [
1 + 𝑏𝑥𝐼𝑥

1/2

1 + 𝑏𝑥(𝐼𝑥
0)1/2

] +∑∑𝑥𝑐𝑥𝑎𝐵𝑐𝑎g(𝛼𝐼𝑥
1/2
)

𝑎𝑐

 (4.2.17)  

Ax is the Debye-Hückel parameter on a mole fraction basis (2.917 for water at 

298.15K). The term Ix
0
 is the ionic strength corresponding to the reference state upon 

which the activity coefficients of the ions are based. For the pure fused salt reference 

state, it is zj
2
/2 for a symmetrical electrolyte. For a reference state of infinite dilution, 

it is zero. This study belongs to the latter. 

 

The parameter bx is the closest approach parameter. It can be calculated (Pitzer and 

Simonson, 1986). However, in practice bx is treated empirically. In multicomponent 

systems it complicates the equations greatly to make bx dependent on the composition 

of ionic components. It has been found satisfactory to set bx constant and equal to 14.9 

for all electrolytes as suggested by Pitzer et al (Pitzer, 1991; Pitzer and Simonson, 

1986). 

 

The parameter α can be written as αx to avoid ambiguity with that in molal basis 

equations. Its magnitude is expected to be larger than the α in the molality equations 

by the factor of 7.45. Therefore values in the range 10 to 15 are expected. The Bca 

term is related to β
(1)

 term in the molality based equations and it is specific to each 

electrolyte. 

 



 122 

The function g(x) is the same as that described in the molality system: 

 g(𝑥) =
2[1 − (1 + 𝑥)exp(−𝑥)]

𝑥2
 (4.2.18)  

Ionic strength on a mole fraction basis is defined as: 

 
𝐼𝑥 =

1

2
∑𝑥𝑖𝑧𝑖

2

𝑖

 (4.2.19)  

The activity coefficients of the solvent and ions are derived as: 

 
𝑙𝑛𝛾𝑤 =

2𝐴𝑥𝐼𝑥
3/2

1 + 𝑏𝑥𝐼𝑥
1/2
+∑∑𝑥𝑐𝑥𝑎𝐵𝑐𝑎exp(−𝛼𝑥𝐼𝑥

1/2
)

𝑎𝑐

 (4.2.20)  

and 

 

𝑙𝑛𝛾𝑀 = −𝑧𝑀
2 𝐴𝑥 [

2

𝑏𝑥
𝑙𝑛(1 + 𝑏𝑥𝐼𝑥

1/2
) +

𝐼𝑥
1/2
(1 − 2

𝐼𝑥
𝑧𝑀
2 *

1 + 𝑏𝑥𝐼𝑥
1/2

]

+∑𝑥𝑎𝐵𝑀𝑎g(𝛼𝑥𝐼𝑥
1/2
)

𝑎

−∑∑𝑥𝑐𝑥𝑎𝐵𝑐𝑎 [
𝑧𝑀
2 g(𝛼𝑥𝐼𝑥

1/2
)

2𝐼𝑥
𝑎𝑐

+ (1 −
𝑧𝑀
2

2𝐼𝑥
) exp(−𝛼𝑥𝐼𝑥)] 

(4.2.21)  

For an anion X, one changes M to X, c to a, and a to c in the above equation.  

 

Figure 4.4 shows the activity coefficient of Na
+
 in NaCl and NaOH solution 

calculated by Pitzer‘s method and Pitzer-Debye-Hückel respectively. The two 

methods produce very close results when the concentration of Na
+
 is less than 0.2 M. 

When the concentration of Na
+
 is between 0.2 and 0.6 M, the activity of Na

+
 by 

Pitzer-Debye-Hückel is slightly lower than that by Pitzer‘s method. This is simply 

because the former method ignored the short range interaction between ions. The long 

range Pitzer-Debye-Hückel equation can be used to describe thermodynamics because 

the range of Na
+
 concentration in this research is under 0.2 M. 
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Figure 4.4 Activity coefficient of Na
+
 in NaCl and NaOH solution by two methods 

  

The presence of a polyelectrolyte is likely to lower the activity of the surrounding ions 

and it is possible that counter-ion condensation will occur (Manning, 1969a; 1969b). 

As has been discussed in Section 2.4.3, the influence of protein charged number on 

activity coefficients can be solved by Manning‘s condensation theory. Using equations 

(2.4.60) and (2.4.61) presented in Section 2.4.3 one can easily calculated activity 

coefficients of ions in polyelectrolyte solutions. 

 

In summary the calculation of thermodynamics of ions in a polyelectrolyte gel is 

divided into two parts. Pitzer‘s method is used to get activity coefficients of ions in 

electrolytes and equations (2.4.38) to (2.4.47) are presented in Section 2.4.2. Manning 

condensation theory (equations (2.4.60) and (2.4.61)) is needed to have activity 

coefficients of ions with protein gel influence. Then the overall activity coefficients 

can be obtained by equation (2.4.68). For water activity coefficients, the similar 

procedure is carried out. The osmotic coefficient in electrolytes can be obtained by 

equation (2.4.40). The osmotic coefficient with the influence of a protein gel is 

obtained by equation (2.4.62). The overall osmotic coefficient is obtained by equation 

(2.4.69). Water activity coefficient in the protein gel is then calculated by equation 

(2.4.48). Finally equation (4.2.1) is used to calculate the thermodynamic factor in the 

GMS equations.  

 

An alternative way is to use equation (4.2.15) to obtain the thermodynamic matrix Γ. 
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Equation (4.2.15) does not required the activity coefficients but the derivatives of the 

excess Gibbs energy. However, the excess Gibbs energy cannot be found from 

Manning‘s condensation theory. Therefore, this method cannot be applied in this 

thesis. However, for the GMS equations in pure electrolyte systems it is easy to use 

because the complicated calculation of activity coefficients of ions is avoided.  

 

In this thesis, the overall activity coefficients were obtained first and then equation 

(4.2.1) was used to obtain the thermodynamic matrix. In COMSOL numerical 

derivatives can be obtained for equation (4.2.1) using the built-in function ―diff‖. 

4.3  Diffusivities 

In order to solve the Maxwell-Stefan equations, the values for the Maxwell-Stefan 

diffusivities between component pairs, namely anion, cation, water and gel, are 

needed. The first major problem here is simply that there is no tabulated data 

available for the diffusivities between polymer and either ions or water. Additionally, 

there is no data for the diffusivities between likely charged ions. Fortunately, 

Wesselingh et al. (1995) provides sufficient information to make it possible to 

estimate the order of magnitude of these values. 

 

For a gel free solution, the diffusion coefficients of plus/plus and minus/minus ion 

pair are negative, with the order of magnitude between 10
-10

 and 10
-13

 m
2
s

-1
. For a 

solution containing a negatively charged gel, if the gel is considered as a solid matrix, 

the diffusion coefficients of water/gel, cation/water, anion/water and anion/gel are the 

values in free solution with a tortuosity correction, between 10
-9

 and 10
-10

 m
2
s

-1
. The 

diffusivity of cations/gel depends on several things, such as swelling, polymer 

morphology, ion size, etc. For ions with a single charge, the diffusivity is about 10
-12

 

m
2
s

-1
. For ions with a double and triple charge, it is somewhere between 10

-13
 and 

10
-14

 m
2
s

-1
. The diffusion coefficients are obtained from Wesselingh and co-workers 

and they are shown in Table 4.2. In some cases typical values are selected from 
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graphs. 

 

When only one electrolyte is involved in diffusion, the diffusion coefficient of ion-ion 

can be calculated by the equation (4.3.1) (Wesselingh and Krishna, 2000): 

 
𝐷+,− = 2(

1

𝐷+,𝑤
+

1

𝐷−,𝑤
)

−1

 (4.3.1)  

where D+,w and D-,w represent the diffusion coefficients of cation/water and 

anion/water respectively. 

Table 4.2 Diffusion coefficients used 

Coefficient Value Ref 

ĐH+,water 9.3x10-9 Wesselingh and Krishna (2000) 

ĐNa+,water 1.3x10-9 Wesselingh and Krishna (2000) 

ĐNa+,protein 5x10-11 Wesselingh et al. (1995) 

ĐOH-,water 5.3x10-9 Wesselingh and Krishna (2000) 

ĐOH-,protein 5.3x10-10 Kraaijeveld et al. (1995) 

ĐCl-,water 2x10-9 Wesselingh and Krishna (2000) 

ĐCl-,protein 2x10-10 Kraaijeveld et al. (1995) 

Đwater,protein 1.8x10-9 Wesselingh et al. (1995) 

 

When there is more than one electrolyte, Wesselingh and Krishna (2000) also 

presented an empirical equation for ion-ion diffusion coefficients relating them to 

ion-water diffusion coefficients: 

 
𝐷+,− =

𝐷+,𝑤 + 𝐷−,𝑤
2

𝑖0.55

|𝑧+𝑧−|2.3
 (4.3.2)  

where 

 
𝑖 = 0.5∑𝑧𝑖

2𝑥𝑖
𝑖

 (4.3.3)  

The same equation applied for D-,-, but with a negative sign. 
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Generally, the accuracy of the model will be limited by the accuracy of these values 

due to such estimation. 

4.4  Mass balance 

It was found that there were two obstacles for setting up mass balance equations in 

this thesis. Firstly the general material balance equations in literature are mostly 

applied for fixed geometries. It is necessary to verify that those equations are also 

applicable for moving geometries. Secondly the reaction rates in equations can cause 

stiffness and hence numerical instability in the simulation. Therefore an alternate set 

of equations is required not only to avoid the numerical instability but also to keep the 

physics unchanged. These two obstacles were overcome in Section 2.7. 

 

In Section 2.7, it was shown that the point equation describing the mass balance is 

independent of a control volume. In a system with chemical reactions, the mass 

balance equation for species can be rewritten as: 

 𝜕𝑐𝑖
𝜕𝑡
+ ∇ ∙ (𝑱𝑖

𝑎 + 𝑐𝑖𝒖
𝑎) =  𝛇 (4.4.1)  

with ζ defined by: 

 
𝛇 =∑𝑣𝑗𝑅𝑗

𝑗

 (4.4.2)  

where v
j
 is the stoichiometric coefficient of species i in the jth reaction and R

j
 is the 

reaction rate in the jth reaction. Here the arbitrary reference velocity, u
a
, is the 

velocity of the protein structure swelling and will be denoted by up later. 

 

The reaction rates can cause stiffness so an alternate set of equations are to be solved 

instead of equation (4.4.1) by using Di Toro‘s (1976) transformation method. Details 

of the mathematical proof of Di Toro method can be found in Section 2.7.1. 

 

Reactions involved in the system under study have already been presented in the 

beginning of this chapter as: 
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 𝑃𝑟𝑜𝑡𝑒𝑖𝑛 𝑤𝑖𝑡𝑕 𝐻 ↔ 𝑃𝑟𝑜𝑡𝑒𝑖𝑛 𝑑𝑖𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 + 𝐻+    𝑟1
𝐻+ + 𝑂𝐻− ↔ 𝐻2𝑂   𝑟2

 (4.4.3)  

in which r represents the reaction rate. Concentration variables can be found in Table 

4.1 and the mass balance equation for each component can be written as: 

 𝜕𝑐1
𝜕𝑡
= −∇ ∙ 𝑵1 + 𝑟1 − 𝑟2

𝜕𝑐2
𝜕𝑡
= −∇ ∙ 𝑵2 − 𝑟2

𝜕𝑐3
𝜕𝑡
= −∇ ∙ 𝑵3 + 𝑟2

𝜕𝑐4
𝜕𝑡
= −∇ ∙ 𝑵4

𝜕𝑐5
𝜕𝑡
= −∇ ∙ 𝑵5

𝜕𝑐6
𝜕𝑡
= −∇ ∙ 𝑵6+𝑟1

𝜕𝑐7
𝜕𝑡
= −∇ ∙ 𝑵7−𝑟1

 (4.4.4)  

As has been discussed in Section 2.7.1, in a system with chemical reactions, mass 

balance equations can be solved without the presence of reaction terms if the reactions 

are significantly faster than other processes. To eliminate the reaction terms and 

obtain alternative equations two new variables, cH and cO, representing the 

concentrations of atomic hydrogen and oxygen, need to be introduced: 

 𝑐𝐻 = 𝑐1 + 𝑐2 + 2𝑐3 + 𝑐7
𝑐𝑂 = 𝑐2 + 𝑐3

 (4.4.5)  

A new set of partial differential equations can be obtained by using cH and cO: 

 𝜕𝑐𝐻
𝜕𝑡
+ ∇ ∙ 𝑵𝐻 = 0

𝜕𝑐𝑂
𝜕𝑡
+ ∇ ∙ 𝑵𝑂 = 0

 (4.4.6)  

with NH and NO defined by: 

 𝑵𝐻 = 𝑵1 +𝑵2 + 2𝑵3 +𝑵7
𝑵𝑂 = 𝑵2 +𝑵3

 (4.4.7)  

The mass balance equations for Cl
-
 and Na

+
 remain unchanged: 

 𝜕𝑐4
𝜕𝑡
+ ∇ ∙ 𝑵4 = 0

𝜕𝑐5
𝜕𝑡
+ ∇ ∙ 𝑵5 = 0

 (4.4.8)  

Electrical neutrality is everywhere: 
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 𝑐1 − 𝑐2 − 𝑐4 + 𝑐5 + 𝑧𝑝𝑐6 = 0 (4.4.9)  

zp is the protein charge which is defined below.  

Applying water dissociation equilibrium in equation (4.1): 

 𝑐1𝑐2 = 𝐾𝑤 (4.4.10)  

Applying the concentration of undissociated hydrogen in β-Lactoglobulin equation in 

Section 2.6, c7 is then calculated: 

 
𝑐7 = 𝑐6 ∑ 𝑁𝑘,𝑗

1

10(𝑝𝐻−𝑝𝐾𝑎𝑗) + 1
𝑗=𝑎𝑚𝑖𝑛𝑜 𝑎𝑐𝑖𝑑𝑠

 (4.4.11)  

with 

 𝑝𝐻 = − log10 𝑐1 (4.4.12)  

 

The total protein concentration c6 is independently determined by the protein gel 

swelling: 

 𝑐6𝑉̅𝑝 + 𝑐3𝑉̅3 = 1 (4.4.13)  

in which 𝑉̅3 is the molar volume of water and 𝑉̅𝑝 is the molar volume of protein in 

[m
3
/mol]. Note here the assumption that ions occupy negligible volume. 

 

Protein charge zp can be obtained by equation (2.6.45) in Section 2.6: 

 
𝑧𝑝 = ∑ 𝑁𝑘,𝑗𝑧𝑗

10𝑧𝑗(𝑝𝐾𝑎𝑗−𝑝𝐻)

10𝑧𝑗(𝑝𝐾𝑎𝑗−𝑝𝐻) + 1
𝑗=𝑎𝑚𝑖𝑛𝑜 𝑎𝑐𝑖𝑑𝑠

 (4.4.14)  

After carefully checking variables and equations, there are 11 equations with 10 

variables namely cH, cO, c1, c2, c3, c4, c5, c6, c7 and protein charge zp. It is found that 

concentrations of salts (c4 and c5) are tied together by electrical neutrality equation 

(4.4.9). Therefore only one mass balance equation for salts, either for Na
+
 or for Cl

-
, is 

independent. 

 

The molar fluxes N in equations are not counted as variables since they are related to 

the relative diffusion flux, J
n
, in the GMS diffusion equation (4.1.7). In many systems, 

the solvent is stationary and thus it is convenient to work in terms of diffusion flux 
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with respect to the solvent: 

 𝑱𝑖
𝑛 = 𝑵𝑖 − 𝑥𝑖𝑵𝑛 (4.4.15)  

 

There is no external potential applied to the system and thus there is no flow of 

current, i.e. 

 
∑𝑧𝑖𝑵𝑖

𝑛−1

𝑖=1

= ∑𝑧𝑖𝑱𝑖
𝑛

𝑛−1

𝑖=1

= 0 (4.4.16)  

In a system containing a charged protein gel which is considered as an additional 

component to the electrolyte system, there are some different features. Firstly, the 

polymer is now moving and not stationary. The protein matrix velocity, up, arises 

from the change in volume (density) of the gel. If the protein matrix is chosen as the 

reference frame the molar diffusion flux of species i can be written by equation 

(2.2.11): 

 𝑵𝑖 = 𝑱𝑖
𝑛 + 𝑐𝑖𝒖𝑝 (4.4.17)  

 

Secondly the protein gel is charged so the net current flux should include component 

n which is the protein matrix: 

 
∑𝑧𝑖𝑵𝑖

𝑛

𝑖=1

=∑𝑧𝑖𝑱𝑖
𝑛 +

𝑛

𝑖=1

𝒖𝑝∑𝑧𝑖𝑐𝑖

𝑛

𝑖=1

 (4.4.18)  

By electroneutrality the second term of the right hand side equation (4.4.18) is zero, 

so: 

 
∑𝑧𝑖𝑵𝑖

𝑛

𝑖=1

=∑𝑧𝑖𝑱𝑖
𝑛

𝑛

𝑖=1

= 0 (4.4.19)  

which is the same as equation (4.4.16). The no net current flux condition still holds 

for the charged protein gel as the n component. 

 

To obtain the molar flux N in the mass balance equations from the relative diffusion 

flux J
n
 we need to define the velocity of protein matrix. Equation (4.4.1) is considered 

when there is no reaction. Each side of equation (4.4.1) is multiplied by the 

corresponding molar volume: 
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 𝑉̅𝑖
𝜕𝑐𝑖
𝜕𝑡
= −𝑉̅𝑖∇ ∙ 𝑵𝑖 ,   𝑖 = 1,2, … ,6 (4.4.20)  

where Ni is the molar flux of component i in mol/m
2
s and 𝑉̅𝑖 is the molar volume of 

component i in m
3
/mol.  

 

Summing for all components: 

 𝜕(∑ 𝑉̅𝑖𝑖=1,𝑛 𝑐𝑖)

𝜕𝑡
= −∇ ∙∑𝑵𝑖𝑉̅𝑖

n

𝑖=1

 (4.4.21)  

The left hand side of equation (4.4.21) represents the rate of change in volume so 

equals zero.  

Further: 

 𝑵6 = 𝑐6𝒖𝑝 (4.4.22)  

By combining equation (4.4.17), (4.4.21) and (4.4.22), up can be determined: 

 
0 = ∇ ∙ (∑ (𝑱𝑖

𝑛 + 𝑐𝑖𝒖𝑝)

𝑖=1,5

𝑉̅𝑖 + 𝑐6𝒖𝑝𝑉̅𝑝+ (4.4.23)  

It is assumed molar volumes of ions are neglected and therefore the above equation 

can be simplified. 

 0 = ∇ ∙ ((𝑱3
𝑛 + 𝑐3𝒖𝑝)𝑉̅3 + 𝑐6𝒖𝑝𝑉̅𝑝) (4.4.24)  

It is further simplified so that up is defined together with the boundary condition of 

velocity at a fixed boundary or on a symmetry plane: 

 0 = ∇ ∙ (𝑱3
𝑛𝑉̅3 + 𝒖𝑝) (4.4.25)  

The flux N7 can be calculated the same way as N6: 

 𝑵7 = 𝑐7𝒖𝑝 (4.4.26)  

4.5  Swelling pressure 

The Maxwell-Stefan diffusion description has the ability to include all the factors in 

diffusion process. Krishna (1987) said ―in many cases of practical interest the 

pressure gradients are negligibly small and this term may therefore be neglected‖. 

This is true when a system is only composed of electrolytes because the molar volume 
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of ions is very small. However for a system involved a macromolecular structure like 

protein, water diffusing into the structure is taken into account and this causes the gel 

to swell. The swelling pressure is directly related to the elasticity of the network. 

 

In Section 2.5 two approaches to describe the swelling mechanics were discussed. The 

mechanic structure approach states that a deformed material body (the strain) is 

linearly related to the force causing the deformation (the stress) by the Hooke‘s law. 

The moduli are material independent and keep constant during swelling. The rubber 

elasticity theory uses deformation free energy to describe a swelling structure. The 

modulus of a rubber is material dependent shown by equation (2.5.47). Equation 

(2.5.71) suggests that the modulus of a swollen rubber decreases as the rubber 

swelling ratio increases. 

 

Protein gels are rubber-like materials. Therefore in this study rubber elasticity theory 

is used to describe the gel deformation. Like a rubber, a gel is composed of a polymer 

network with the important difference that a gel also contains a considerable fraction 

of liquid. Swelling pressure is to be calculated from an expression for the Helmholtz 

elastic energy of a network similar to Maurer and Prausnitz‘s method (Maurer and 

Prausnitz, 1996; Sassi et al., 1996). The Helmholtz energy of the elastic network 

depends on the deformation of the network from its initial state, which is the state 

where it is produced. That deformation is expressed by the ratio of the volume of the 

gel, V, to the volume of the gel in the initial state, V0: 

 
𝐴 =

3

2
𝑁𝑘𝑇 0(

𝑉

𝑉0
*

2
3
− 11 + 𝑓 (

𝑉

𝑉0
* (4.5.1)  

where N is the number of crosslinked chains in the protein network structure, k is the 

Boltzmann‘s constant and f(V/V0) stands for the different methods (Flory, 

Kuhn-Wall-Flory and Treloar etc).  

 

For Flory: 
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𝐴 =

1

2
𝑁𝑘𝑇 03 (

𝑉

𝑉0
*

2
3
− 3 − ln

𝑉

𝑉0
1 (4.5.2)  

For Kuhn-Wall-Flory: 

 
𝐴 =

𝑁𝑘𝑇

2
03 (

𝑉

𝑉0
*

2
3
− 3 − 2 ln

𝑉

𝑉0
1 (4.5.3)  

For Treloar: 

 
𝐴 =

3

2
𝑁𝑘𝑇 0(

𝑉

𝑉0
*

2
3
− 11 (4.5.4)  

 

Combining with Maurer and Prausnitz‘s (1996) concept: the pressure difference 

between the gel and its surroundings is caused by the elastic properties of the network. 

This can be written as:  

 𝑃 − 𝑃0 = (
𝜕𝐴

𝜕𝑉
*|
𝑇
 (4.5.5)  

in which P0 is the surrounding pressure. 

 

Therefore the elastic contribution to the driving force for the swelling process is 

obtained by equation (4.5.5). 

For the Flory free energy: 

 
∆𝑃 = 𝑃 − 𝑃0 =

𝑁𝑘𝑇

2𝑉
02 (

𝑉

𝑉0
*

2
3
− 11 (4.5.6)  

Maurer and Prausnitz (1996) used equation (4.5.6) to describe the swelling pressure. 

However this was proved to be wrong in Section 2.5.1 because the free energy did not 

obey Edwards‘ principle. 

 

Different pressure models were presented in Section 2.5.1. The following equations 

are the representation of the equations (2.5.48) to (2.5.51) in Section 2.5.1. 

 

For the Kuhn-Wall-Flory free energy: 
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∆𝑃 = 𝑃 − 𝑃0 =

𝑁𝑘𝑇

𝑉
0(
𝑉

𝑉0
*

2
3
− 11 (4.5.7)  

Or for the Treloar free energy: 

 

∆𝑃 = 𝑃 − 𝑃0 =
𝑁𝑘𝑇

𝑉0
(
𝑉

𝑉0
*
−
1
3
 (4.5.8)  

Or Ogden: 

 
∆𝑃 = 𝑃 − 𝑃0 = 𝐺𝑒𝑙𝑟 *𝜈2

−
1
3
(𝛼𝑟−3)

− 𝜈2

1
3
(2𝛼𝑟+3)

+ (4.5.9)  

and Mooney: 

 ∆𝑃 = 𝑃 − 𝑃0 = 𝐶1(𝜈2
1/3
− 𝜈2

7/3
) (1 +

𝐶2
𝐶1
𝜈2
−2/3

* (4.5.10)  

 

It is shown by James and Guth (Treloar, 2005) that the initial shear modulus G is 

equivalent to: 

 𝐺 = 𝑁𝑘𝑇 (4.5.11)  

Protein cannot diffuse out into the bulk and thus the number of moles of protein is a 

constant: 

 𝑐60𝑉0 = 𝑐6𝑉 (4.5.12)  

where c60 represents the initial concentration of total protein. 

Therefore the ratio,V/V0, is written by: 

 𝑉

𝑉0
=
𝑐60
𝑐6

 (4.5.13)  

 

Figure 4.5 shows the pressure against the ratio of the volume of the gel, V, to the 

volume of the gel in the initial state, V0. The parameters used are the same as those in 

Section 2.5.1. 
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Figure 4.5 Different pressure models 

 

In this study, at the initial state the protein gel is not dry but has some water content so 

it is expected that the initial pressure difference between the gel and the bulk is zero. 

Figure 4.5 shows that Treloar model gives its highest pressure difference at initial 

state. Other three models, Kuhn-Wall-Flory, Ogden and Moonery, provide zero 

pressure difference at initial state. Therefore the pressure model can be chosen 

between Kuhn-Wall-Flory, Ogden and Mooney. Equation (4.5.7) of Kuhn-Wall-Flory 

will be used in the simulation. 

4.6  Summary 

At this point the mathematical model of the protein gel swelling is finally set up. 

Compared with previous models in literature, this model has many significant features. 

First of all the diffusion model is based on the GMS equations. Previous models either 

used Fickian diffusion (Hong et al., 2008) or the Nernst-Planck equation (Grimshaw 

et al., 1990; De and Aluru, 2004). It has been already discussed that with many 

limitations, Fick‘s law cannot provide a reliable solution in the case that involves 

multicomponents and the gel. The Nernst-Planck equation is valid for dilute 

electrolytes and is only a limiting case of the GMS equations (Taylor and Krishna, 

1993). The model of Bisschops et al. (1998) was the only one that used the GMS 
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equations to describe diffusion. However, it only had two components and was not a 

multicomponent diffusion system. 

 

Secondly it is the first known swelling model that includes thermodynamics. This was 

very challenging because it was very difficult to define the thermodynamics of a 

polyelectrolyte system. It was not clear how ionic and polymer effects should be 

combined to the solvent activity. The influence of the charge number of the gel on the 

activity of ions and solvent was not known. After lots of research, this problem was 

solved and the thermodynamics model in the thesis was achieved by combining 

thermodynamics of electrolytes and Manning condensation theory in polyelectrolytes. 

However, models found in literature (Hasa et al., 1975; Horkay et al., 2000; 

Grimshaw et al., 1990; De and Aluru, 2004; Bisschops et al., 1998) assumed that the 

aqueous solution was ideal. 

 

Thirdly the pressure model is described by rubber elasticity theory. By using 

deformation free energy, the pressure is a function of the gel volume. However, the 

pressure term in previous models was obtained from the water equilibrium (Grimshaw 

et al., 1990; De and Aluru, 2004). This pressure was actually the osmotic pressure and 

not applicable for dynamic diffusion. Then the Hooke‘s law was used to describe the 

swelling structure displacements (Tanaka et al., 1973; Tanaka and Fillmore, 1979; 

Grimshaw et al., 1990; De and Aluru, 2004). This was also wrong because Hooke‘s 

law is only valid for small displacements. The swelling degree of a polyelectrolyte gel 

can be large. When immersed in a solvent, a polyelectrolyte network is able to absorb 

large amounts of solvent molecules up to several hundred times its dry mass (Mann et 

al., 2005). 

 

The model includes the protein charge as a function of pH. Therefore, the model can 

be easily shifted from acid conditions to alkaline conditions. The gel swelling model 

of Tanaka et al. (1973) and Tanaka and Fillmore (1979) only had two components: 

water and a neutral gel. Although some models considered ionic species in gel 
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swelling (Grimshaw et al., 1990; De and Aluru, 2004), the gel charge density was 

considered constant and not a function of pH. 

 

Finally mass balance equations are modified by eliminating the reaction terms to 

ensure stable solutions. The model can be easily extended to already systems with 

more ions.  
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 5 Results and discussion 

Chapter 4 has presented the complete mathematical equations of a polyelectrolyte gel 

system. In this section these equations are going to be solved using COMSOL 

Multiphysics general form. Firstly it is useful to check the non-ideal effect on the 

diffusion process.  

5.1  Ideal vs. non-ideal 

5.1.1  Ideal vs. non-ideal in electrolyte systems 

In Section 3.3 the diffusion in an ideal mixture of NaCl and HCl ideal mixture was 

solved in COMSOL. Next the non-ideal mixture of NaCl and HCl with the same 

conditions were solved in COMSOL and then compared with the ideal solution 

presented in Section 3.3. 

 

The calculation of thermodynamics is defined in Section 4.2: 

 
𝑄 =

𝐺𝐷𝐻

𝑅𝑇
= −

4𝐴𝑥𝐼𝑥
𝑏𝑥

𝑙𝑛 [
1 + 𝑏𝑥𝐼𝑥

1/2

1 + 𝑏𝑥(𝐼𝑥
0)1/2

] +∑∑𝑥𝑐𝑥𝑎𝐵𝑐𝑎g(𝛼𝐼𝑥
1/2
)

𝑎𝑐

 (5.1.1)  

Followed by: 

 
𝛤𝑖𝑗 = 𝛿𝑖𝑗 + 𝑥𝑖 {𝑄𝑖𝑗 − 𝑄𝑖𝑛 −∑𝑥𝑘(𝑄𝑘𝑗 − 𝑄𝑘𝑛)

𝑛

𝑘=1

} (5.1.2)  

with  

 
𝑄𝑖 =

𝜕𝑄

𝜕𝑥𝑖
|
∑

 (5.1.3)  

and 

 
𝑄𝑖𝑗 =

𝜕𝑄𝑖
𝜕𝑥𝑗
|
∑

 (5.1.4)  

Modelling parameters: 

 𝐴𝑥 = 2.917 𝑏𝑥 = 14 𝛼𝑥 = 13 (5.1.5)  
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 𝐵𝑁𝑎𝐶𝑙 = 16.2622 𝐵𝐻𝐶𝑙 = 20.009 (5.1.6)  

The governing equations for the GMS diffusion in NaCl and HCl mixture can be 

found in Appendix C. 

 

The following figures show the comparisons between ideal and non-ideal solutions of 

generalised Maxwell-Stefan diffusion in NaCl and HCl mixture. It can be seen that 

the non-ideal matrix in the driving force does not influence the diffusion physics. It 

lowers the activity of each ion and, as a result the concentrations of all three ions were 

lower in the non-ideal case than in the ideal case. The non-ideal influence is more 

significant on hydrogen ion than other ions shown by Figure 5.1 to 5.4. From these 

comparisons we can draw the conclusion that the non-ideal influence on ion diffusion 

is small and that ideal solution behaviour is sufficient for the modelling. 

 

 
Figure 5.1 Concentration of H

+
 in the centre versus time 

 

 

Figure 5.2 Concentration of H
+
 along the membrane at 100 seconds 
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Figure 5.3 Concentration of Na
+
 in the centre versus time 

 

 

Figure 5.4 Concentration of Cl
-
 in the centre versus time 

 

Figure 5.5 to 5.7 present the activity coefficient of each ion in the centre as a function 
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Figure 5.5 Activity coefficient of H
+
 in the centre 

 

 
Figure 5.6 Activity coefficient of Na

+ 
in the centre 

 

 

Figure 5.7 Activity coefficient of Cl
-
 in the centre 
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It can be seen from Figure 5.5 to 5.7 that the activity coefficients of all three ions are 

very similar with the range between 0.875 and 0.85 during the simulation time of 100 

seconds. This is probably the reason that the non-ideal influence on ion diffusion is 

small. Figure 5.8 compares the activity coefficients of all three ions. It shows the 

similar activity coefficients during the simulation time especially for Cl
-
 and Na

+
. The 

activity curve of H
+
 slightly diverges from the other two and this may cause the more 

significant non-ideal effect on hydrogen ion than the others. 

 

 
Figure 5.8 Activity coefficient comparisons of three ions (Cl

-
 and Na

+
 curves overlap) 
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+
, Cl

-
 and Na

+ 
for diffusion in HCl and 

NaCl mixture are similar and thus thermodynamics does not influence the diffusion 

pattern. For the generalised Maxwell-Stefan diffusion in multielectrolyte systems with 

similar activity coefficients of all ions, the non-ideal effect is small, and it is sufficient 

to use ideal solution behaviour for the modelling. However, for systems with different 

activity coefficients there is no conclusive proof to support this argument. 

5.1.2  Ideal vs. non-ideal in protein gel 

In this section, the 1D protein gel swelling model was solved in COMSOL 

Multiphysics to investigate the ideal and non-ideal results. For simulation, the 

thickness of the gel was set to 1 mm. At initial state the volume fraction of the protein 

0.85

0.855

0.86

0.865

0.87

0.875

0 10 20 30 40 50 60 70 80 90 100 110

A
ct

iv
it

y 
co

ef
fi

ci
en

t 

Time (s) 

 H+

Cl-

Na+



 142 

gel was 10% and pH value inside the protein gel was set to 7. The pH of the bulk was 

10. The initial and bulk concentrations of H
+
 and OH

-
 were obtained by pH. The 

simulation time was 100 seconds. The details of modelling equations and COMSOL 

settings were presented in Appendix D. 

 

Figure 5.9 and 5.10 show the concentration of Na
+
 and water along the gel thickness 

after 100 seconds. The non-ideal influence is significant. The diffusion process of Na
+
 

and water of non-ideal case is slower than the ideal case. 

 

 

Figure 5.9 Concentration of Na
+
 along the length at time =100s 

 

 

Figure 5.10 Concentration of water along the length at time =100s 
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the COMSOL can produce some unrealistic solutions. There is no reason for 

non-idealities to cause the discontinuity seen in the graphs so it was concluded that 

there were numerical calculation errors. Some calculation problems are investigated 

later in Section 5.3.2. The slow transport process in the non-ideal case can be 

explained by the activity coefficients. Figure 5.13 and 5.14 present the activity 

coefficients of Na
+
 in the centre of the protein gel with Manning condensation and 

without Manning condensation respectively. Manning condensation effect reduces the 

activity coefficient of Na
+
 from about 0.8 to about 0.53 shown by Figure 5.15. Figure 

5.16 shows that the overall activity coefficient of Cl
- 
is about 0.78 which is larger than 

that of Na
+
. This is because the protein gel is negatively charged when the pH value is 

between 4 and 7. Na
+
 is the counter-ion for the negatively charged protein and the 

Manning effect is more significant on the counter-ion (Na
+
) than on the co-ion (Cl

-
). 

  

 

Figure 5.11 Volume Expansion at the centre (non-ideal) 

 

 

Figure 5.12 Volume Expansion at the centre (ideal) 
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Figure 5.13 Overall activity coefficient of Na
+
 (with Manning effect) at the centre over time 

 

 

Figure 5.14 Activity coefficient of Na
+
 without Manning effect at the centre over time 

 

 

Figure 5.15 Activity coefficient of Na
+
 at the centre over time 
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Figure 5.16 Overall activity coefficient of Cl
-
 at the centre over time 

 

In conclusion the non-ideal effect is small in the multielectrolyte systems shown by 

Section 5.1.1 but the non-ideal effect is not small in the protein gel swelling case and 

should be considered. Therefore it is always a good idea to check the non-ideal effect 

in the simulation first. The ideal case was used in the following simulations to reduce 

the complexity of the problem in the hope that COMSOL would be able to find 

solutions. If ideal solutions could not be achieved there was little point in attempting 

non-ideal solutions. 

5.2  The influence of pH and salt concentrations 

The effect of pH on the swelling ratio for β-lactoglobulin (βLg) was reported by 

Mercadé-Prieto et al. (2007b) shown by Figure 5.17. 

 

Figure 5.17 Effect of pH on the equilibrium swelling degree in βLg gels at different NaCl 

concentrations (Figure 4 in Mercadé-Prieto et al., 2007b) 
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suggest that high pH and high salt concentrations reduce the swelling. The purpose of 

the following simulation is to get numerical results that are in good agreement with 

these experimental results. However, problems were found during COMSOL 

simulation. For the simulation the gel thickness was 1 mm and the equilibrium shear 

modulus was 2×10
6
 Pa. Initially the protein gel was set to be neutral. 

 

Firstly the bulk conditions were: the concentration of NaCl was 0.01M and the pH 

was 4. It was found that COMSOL stopped at simulation time of around 200 seconds 

shown by Figure 5.18. Numerical calculation errors were also suspected as the cause. 

 

Figure 5.18 Volume expansion at centre with pH=4 and NaCl=0.01M 

 

Then the bulk condition of pH was set to 11. The simulation was quite smooth. 

Therefore the calculation was carried out with two different salt concentrations in the 

bulk, 0.01M and 0.05M of NaCl, respectively. Figure 5.19 and 5.20 show that 

swelling equilibrium is reached after 800 seconds. The equilibrium volume expansion 
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concentration. This can be demonstrated by below the value of 3 in Figure 5.19 and 
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Figure 5.19 Volume expansion at the centre with pH=11 and NaCl=0.05M 

 

 

Figure 5.20 Volume expansion at the centre with pH=11 and NaCl=0.01M  

 

When the pH of the bulk was above 12, COMSOL failed to find solutions. At this 
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equations. Firstly the modelling equations require a very strict local conservation of 

mass, but COMSOL Multiphysics is based on the Galerkin finite element method and 

it cannot ensure local conservativeness (Cockburn, et al., 2007; Kees, et al., 2008; 

Sochala, et al., 2009; Bevan et al., 2009). Secondly the gel geometry is moving with 

time due to swelling. All the above results were obtained without considering the 

moving geometry. Therefore the ability of COMSOL to solve mass balance equations 
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5.3  COMSOL problems 

During COMSOL trial simulations, it was found that there were problems with 

COMSOL calculation. In order to find the problems caused by mathematics in 

equations or caused by incapability of COMSOL a simple swelling problem was 

considered which involved only two components: water and a neutral protein. Firstly 

the moving mesh method (ALE) of COMSOL needs to be introduced. 

5.3.1  Arbitrary Lagrangian-Eulerian (ALE) method 

The gel geometry is not fixed in space but moving with time due to swelling, so we 

need to understand two coordinate systems: the spatial coordinate system with 

coordinate axes fixed in space and the material coordinate system with coordinate 

axes fixed in the material. The former is often called an Eulerian formulation and the 

latter is called Lagrangian as has been discussed in Section 2.7. The focus of this 

study is on simulating the physical state such as concentrations at fixed points in 

space, and it is unreasonable to follow the state of individual material particle. 

Therefore Eulerian formulation is used. An inherent problem with the Eulerian 

formulation is that it cannot handle moving domain boundaries, since physical 

quantities are referred to fixed points in space, but the set of spatial points currently 

inside the domain boundaries changes with time. To allow moving boundaries, an 

arbitrary Lagrangian-Eulerian (ALE) method in COMSOL Multiphysics was needed. 

For the details of mathematical description of this method readers can refer to 

COMSOL Multiphysics User‘s Guide (COMSOL Multiphysics 3.5, 2008). 

 

After adding the ALE method to the governing equations, there are two frames 

existing in the system: the spatial frame and the material frame. The spatial frame is 

the fixed Euclidean coordinate system with spatial coordinates (x, y). The material 

frame is a coordinate system which identifies material points by their spatial 

coordinates (X, Y). Figures 5.21 and 5.22 show the relationship between the two 



 149 

frames. 

 

Figure 5.21 An undeformed geometry. The spatial frame (x, y) and the material frame (X, Y) coincide 

(COMSOL Multiphysics 3.5, 2008) 

 

 

Figure 5.22 A deformed geometry. The spatial frame (x, y) remains the same but the material frame (X, 

Y) has moved (COMSOL Multiphysics 3.5, 2008) 

 

Therefore the mathematical equations of protein gel swelling should be solved in the 

spatial frame, and the geometry of the gel should move with physically induced 

movement obtained by integration of the protein gel velocity over time. There the 

FEM nodes were moved with the displacement calculated by the velocity of the 

protein matrix at each node. However when the ALE method was added to the 

simulation, COMSOL failed to find solutions at any conditions. 

5.3.2  Results of water and a neutral protein 

Since COMSOL failed during trial simulations, suspicions arose that COMSOL may 

not handle situations with strict mass conservation conditions. The conservativeness 

of the FVM used in CFD software is fully discussed by Versteeg and Malalasekera 
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(2007). Therefore a simple swelling model was simulated to check the COMSOL 

ability in conservativeness and for comparison a MATLAB® program with forced 

mass conservation was written. In MATLAB programming finite volume segments 

were used and the swelling on each time step determined each segment boundary and 

position. This simple swelling model involves two components: a neutral protein with 

solvent (water). The model equations are the simplified version of the complete 

mathematical equations in the previous chapter. 

 

The model equations are: 

 𝜕𝑐𝑤
𝜕𝑡

= −∇ ∙ (𝑱𝑤 + 𝑐𝑤𝒖𝑝) (5.3.1)  

with Jw defined by the GMS equations: 

 𝑱𝑤 = −𝐷𝑤,𝑝 (
𝑥𝑝

𝑐𝑡
*
−1

∇𝑥𝑤 (5.3.2)  

where cw represents the water concentration, Jw denotes the diffusion flux of water, xp 

denotes the mole fraction of the neutral protein, xw is the mole fraction of water, ct is 

the total concentration, Dw,p is the Maxwell-Stefan diffusion coefficient of water in the 

gel and up is the moving velocity of the protein. 

The concentration of the protein, cp, is calculated by: 

 𝑐𝑤𝑉̅𝑤 + 𝑐𝑝𝑉̅𝑝 = 1 (5.3.3)  

with 𝑉̅𝑤 the molar volume of water and 𝑉̅𝑝 the molar volume of the protein. 

up is defined by: 

 ∇ ∙ (𝑱𝑤𝑉̅𝑤 + 𝒖𝑝) = 0 (5.3.4)  

 

For COMSOL simulation, two domains were set up shown by Figure 5.23.  

 

Figure 5.23 Two domains in COMSOL with PT1 the interface of the left and right domain 

The length of the left domain is 0.001 m and the length of the right is 0.002 m 
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Ideally the left domain is the protein gel domain with 10% protein content at the 

initial state and the right domain is the bulk with no protein content. However, there 

must be some protein in the right domain to get COMSOL simulation results. 

COMSOL can find solutions with at least 0.3% protein in the right domain. When the 

protein in the right was set to 0.2% COMSOL failed.  

 

Figure 5.24 shows the concentration of the protein gel solved by COMSOL and 

MATLAB. The simulation is carried out with 8% protein in the right domain. It can 

be seen that COMSOL solution matches with the MATLAB solution. 

 

 

Figure 5.24 Concentration of the protein along the distance after 200 seconds (8% protein in the right) 

 

Then the percentage of the protein in the right domain is reduced to 1% and the 

COMSOL result was still in agreement with the result of MATLAB shown by Figure 

5.25. 
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Figure 5.25 Concentration of the protein along the distance after 200 seconds (1% protein in the right) 

 

The percentage of the protein in the right department is further reduced to 0.3% and 

Figures 5.26 and 5.27 show the concentrations of water and the protein obtained by 

COMSOL and MATLAB. They are still matched with each other. However when the 

volume fraction of the gel in the right is set to 0.2%, COMSOL cannot solve this 

problem but MATLAB still get good solutions shown by Figure 5.28. Figure 5.29 

shows the concentration of the protein solved by MATLAB when there is no protein 

in the right domain. 

 

 

Figure 5.26 Concentration of water along the distance after 200 seconds (0.3% protein in the right) 
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Figure 5.27 Concentration of the protein along the distance after 200 seconds (0.3% protein in the 

right) 

 

 

Figure 5.28 Concentration of the protein along the distance after 200 seconds solved by MATLAB (0.2% 

protein in the right) 

 

 

Figure 5.29 Concentration of the protein along the distance after 200 seconds solved by MATLAB (0.0% 

protein in the right) 

 

Since the same equations can be solved by the MATLAB programming method, the 
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check was then carried out. For the whole system including the left and the right 

domains, there was no water and protein produced so the mass of water and the 

protein should be conserved. Table 5.1 and Table 5.2 show the total molar mass 

comparison between initial state and after some simulation time. 

 

Table 5.1 Mass conservation comparison of COMSOL and MATLAB (1% protein in the right) 

Total 

moles 

Time=0 

Time=200s 

(COMSOL) 

Error% of 

COMSOL 

Time=200s 

(MATLAB) 

Error% of 

MATLAB 

 Protein 0.01476923077 0.01476923710 4.28641E-07 0.01476923077 0 

Water 159.68 159.6799971 1.78622E-08 159.68 0 

 

Table 5.2 Mass conservation comparison of COMSOL and MATLAB (0.3% protein in the right) 

Total 

moles 

Time=0 

Time=200s 

(COMSOL) 

Error% of 

COMSOL 

Time=200s 

(MATLAB) 

Error% of 

MATLAB 

 Protein 0.01304615385 0.01304616067 5.2275943E-07 0.01304615385 0 

Water 160.4562222 160.4562191 1.9158359E-08 160.4562222 0 

 

It can be seen from Table 5.1 and Table 5.2 that the mass was perfectly conserved in 

MATLAB. This was no surprise because the mass was forced to be conserved. In the 

MATLAB programming, flux leaving a face of one finite volume exactly equalled the 

flux entering the neighbouring volume through the same face. However, there were 

some mass variations in COMSOL solutions. The percent errors increased when the 

protein content in the right department is reduced. This was probably the reason why 

COMSOL fails when the volume fraction of the protein in the right domain is 0.2%. 

The percent errors are estimated with the order of magnitude around 10
-7

 and this may 

seem small in the simple gel swelling. However, for the protein gel swelling system 

the concentration of hydrogen atoms in H
+
 and OH

-
 is of the order of magnitude 

around 10
-7

 mol/L while the concentration of hydrogen atoms in water is about 110 

mol/L so the required errors are extremely small. The hydrogen (H) and oxygen (O) 

balance equations outlined in Section 4.4 in the thesis model cannot be satisfied in 
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COMSOL calculation. The alternative of using fast acid/base reactions was rejected in 

Section 2.7.1. 

 

In conclusion, COMSOL could solve multicomponent diffusion in multielectrolytes as 

shown in section 3.3 and 5.1. In this case the mass of each component was of the 

same order and therefore the requirement of conservativeness was not strict. However, 

COMSOL was not suitable for even simple swelling problems. It can be seen from 

Table 5.1 and 5.2 that the mass was not conserved in the swelling of water and a 

neutral protein. For the protein gel swelling system, the hydrogen concentration is the 

summation of H
+
 concentration, water concentration and undissociated hydrogen in 

protein. The H
+
 concentration was much smaller than water concentration and 

therefore the hydrogen balance requirement is very strict. However, in COMSOL the 

concentration of H
+
 was of the same order of magnitude as the percent errors in the 

simple swelling model. The strict mass balance of hydrogen (H) could not be 

achieved. The same situation applied to the oxygen balance. Therefore, another 

numerical method needs to be considered for the protein gel swelling model. 
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 6 Overall discussion, conclusions and future work 

A complete mathematical model of protein gel swelling was set up. Compared with 

previous models found in literature there are many contributions made by the thesis 

model. 

6.1  Overall discussion 

One of the contributions is that the dynamics of diffusion of electrolytes in a protein 

gel was described by the GMS equation not the Fickian diffusion in this thesis. This 

was thought to be the first time that the GMS equation has been used in a protein gel 

swelling system. Most previous models either used Fickian diffusion such as Hong et 

al. (2008; 2010) or used the Nernst-Planck diffusion such as Grimshaw et al. (1990) 

and De and Aluru (2004). Although Bisschops et al. (1998) used the GMS equation in 

their model, the model had two components only and it was not a multicomponent 

diffusion model. Fickian diffusion failed to include different driving forces in cases 

that involve multicomponents. Wesselingh and Krishna (2000) observed that in a 

solution of sodium chloride and hydrogen chloride, sodium diffused against its 

gradient, in the direction opposite to what we expected from Fickian diffusion. A 

numerical example of diffusion in the mixture of HCl and NaCl was done in Section 

3.3. In this example the concentration of H
+
 inside and outside a membrane was 

deliberately set equal. By Fickian diffusion, H
+
 did not move because there was no 

concentration gradient for H
+
 across the region. However the GMS diffusion 

predicted the diffusion of H
+
 into the membrane caused by the diffusion potential. 

Fickian diffusion cannot provide a reliable solution for multicomponent diffusion 

systems, let alone the diffusion of multielectrolytes into a gel. The Nernst-Planck 

equation is valid for dilute electrolytes and is only a limiting case of the GMS 

equation (Taylor and Krishna, 1993). 

 

Second contribution of this model is that the pressure term was considered to be a 
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driving force in the GMS equation and was described by rubber elasticity theory. A lot 

of effort was put into this part of the research. Because the most important physical 

characteristic of a rubber-like material is the degree of deformability exhibited under 

the action of stresses, plenty of force-extension experiments have been carried out. 

Rubber elasticity theories have been provided to match those experimental results 

(Treloar, 2005). At the start it was not clear if rubber elasticity theory could be used in 

a protein gel swelling system. In previous models the pressure term was obtained 

from the water equilibrium (Grimshaw et al., 1990; De and Aluru, 2004). Then the 

Hooke‘s law was used to describe the swelling structure displacements (Tanaka et al., 

1973; Tanaka and Fillmore, 1979; Grimshaw et al., 1990; De and Aluru, 2004). This 

kind of approach is unlikely to be accurate. Firstly the pressure used was the osmotic 

pressure and is applicable for equilibrium states only. Secondly Hooke‘s law of 

elasticity describes the linear relationship between a material body deformed (the 

strain) and the force causing the deformation (the stress). The modulus was assumed 

to be constant during swelling.  

 

However, rubber-like materials such as protein gels are nonlinear. The modulus of a 

swollen rubber decreases as the rubber swelling ratio increases as demonstrated by 

equation (2.5.71) in Section 2.5.1. Then the paper of Ogden (1972) was found and it 

considered the inflation of a circular membrane into a spherical shape by using rubber 

elasticity theory. The general form of the pressure-extension ratio relation for the 

inflation of a spherical membrane was given by Hart-Smith (1966). The swelling of a 

gel is similar to the inflation of a spherical membrane and therefore it was decided to 

use rubber elasticity theory to describe the pressure term in the GMS equation.  

 

As the research continued, the Maurer and Prausnitz (1996) equation to describe the 

pressure difference between the gel and its surroundings was found and is given by 

equation (2.5.17). In this thesis, by using equation (2.5.17), the pressure is a function 

of the gel volume. In Section 2.5.1, several pressure models were obtained from 

different deformation free energy equations. However they were not very satisfactory. 
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When those models were compared with experimental results of the inflation of a 

spherical rubber balloon of Hart-Smith (1966), divergence was found in regions with 

large swelling ratios as suggested in Figure 2.12 and 2.13. However, there was no 

evidence that the pressure models could be improved without a significant amount of 

new research. 

 

The third contribution was the inclusion of thermodynamic non-ideality. The 

difficulty in this part was to define the thermodynamics with the influence of a 

charged gel. It was not clear how ionic and polymer effects should be combined to the 

solvent activity. The influence of the charge number of the gel on the activity of ions 

and solvent was not known. Previous models found in literature (Hasa et al., 1975; 

Horkay et al., 2000; Grimshaw et al., 1990; De and Aluru, 2004; Bisschops et al., 

1998) assumed that the aqueous solution was ideal because they believed that ideal 

solution modelling could get diffusion behaviours in good agreement with 

experiments. However, this assumption needs to be justified. One advantage of the 

Maxwell-Stefan equation is its ability to deal with thermodynamic non-idealities with 

the matrix Г. Therefore making the assumption of ideal behaviour was avoided as 

doing so would defeat the purpose of using the Maxwell-Stefan equations. To include 

non-ideal behaviour in the GMS equation the activity coefficients of all components 

in a charged gel system must be determined. The presence of a polyelectrolyte is 

likely to lower the activity of the surrounding ions and it is possible that counter-ion 

condensation will occur (Manning, 1969a; 1969b). After lots of research, the 

influence of protein charged number on activity coefficients was modelled using 

Manning‘s condensation theory as discussed in Section 2.4.3. Finally it was decided 

that the calculation of thermodynamics of ions in a polyelectrolyte gel was divided 

into two parts. Pitzer‘s method was used to get activity coefficients of ions in 

electrolytes and equations (2.4.38) to (2.4.47) were presented in Section 2.4.2. 

Manning condensation theory (equations (2.4.60) and (2.4.61)) was used to determine 

activity coefficients of ions with protein gel influence. The overall activity 

coefficients were obtained by equation (2.4.68). The osmotic coefficient in 
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electrolytes was obtained by equation (2.4.40). The osmotic coefficient with the 

influence of a protein gel was obtained by equation (2.4.62). The overall osmotic 

coefficient was then obtained by equation (2.4.69). Water activity coefficient in the 

protein gel was calculated from the overall osmotic coefficient using equation (2.4.48). 

Finally equation (4.2.1) was used to calculate the thermodynamic factor in the GMS 

equations. Pitzer‘s method to describe the activity coefficients in multielectrolytes is 

well studied and only a few parameters in Pitzer‘s method have not been found. 

Pitzer‘s method can accurately predict the activities of ions in multielectrolytes and 

this can be proved by Figure 2.6 and 2.7 in Section 2.4.2. On the other hand, the 

accuracy of Manning‘s condensation theory is not clear. Experiments have been 

carried out for systems in which the polyelectrolyte and the added simple salt had a 

common counter ion. It was found that the theory was in excellent agreement with the 

value of experiments in the more dilute region. In less dilute regions the Manning 

condensation theory did not perform well because the short range interactions 

between polyelectrolyte ion and counter-ions were ignored. Therefore, the Manning 

theory may not necessarily be accurate in condensed polyelectrolyte solutions. For 

real polyelectrolyte solutions, Manning‘s condensation theory needs to be improved to 

include short range interaction. The overall framework used for non-ideality should 

remain satisfactory even if other component non-ideal equations are used. 

 

This was the first model known to include pH as a variable. Therefore, the model can 

be easily shifted from acid conditions to alkaline conditions. Most previous models 

treated gels as neutral such as Tanaka et al. (1973) and Tanaka and Fillmore (1979). 

Although some models considered ionic species in gel swelling (Grimshaw et al., 

1990; De and Aluru, 2004), the gel charge density was considered constant. In the 

thesis model, the protein charge number was a function of pH. To do this, research on 

protein chemistry was applied to obtain equations in a suitable form for the model. 

For a normal acid or base, such as HCl or NaOH, the dissociation equilibrium can be 

described by the Henderson-Hasselbach equation, equation (2.6.7) presented in 

Section 2.6. However, things are more complicated for proteins. Proteins are natural 
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polymer molecules consisting of amino acid units. Each amino acid has at least one 

basic amine group –NH2 and one acidic functional group –COOH shown in Figure 

2.14. There is an internal transfer of a hydrogen ion from the –COOH group to the 

–NH2 group to form a zwitterion. When an amino acid dissolves in water, the 

zwitterion interacts with water molecules acting as both an acid and a base. Therefore, 

in an aqueous solution of an amino acid the two acid-base dissociation equilibria take 

place simultaneously. The pH dependent dissociation equilibrium of alanine was 

studied first. Each protein molecule has different amino acid residues with potential 

hydrogen ion equilibria. At any given pH, these residues will be in various 

protonation states depending on their individual hydrogen ion dissociation constant i.e. 

pKas. With knowledge of this and parameters of amino acids found in β-lactoglobulin 

protein, Table 2.3 in Section 2.6, the net charge of a protein was then calculated by 

equation (2.6.45) and the concentration of undissociated hydrogen in β-lactoglobulin 

protein was calculated by equation (2.6.46). Experiments suggest that the swelling 

degree deceases as pH increases and deswelling may occur at high pH 

(Mercadé-Prieto et al., 2007b). The relationship between the swelling ratio and the pH 

can be investigated only if the pH is included in the swelling model. 

 

General material balance equations are normally applied to a fixed control volume. 

Previously derived proof was given in the thesis that they can also be applied to a 

swelling geometry. Three different control volumes, namely material control volume, 

fixed control volume and moving control volume, were studied. The general form for 

a balance principle in a material control volume was first derived. By applying the 

Reynolds theorem along with the divergence theorem, the point equation for balance 

principle was obtained by equation (2.7.12). Then the material balance equations were 

derived in a moving control volume. It showed that the point equation describing the 

mass balance was independent of the choice of a control volume. The same result, 

comparing equation (2.7.16) with equation (2.7.27), was obtained whether a moving 

control volume or a material control volume was used. After this proof, the general 

balance principle can be used in the case of swelling with confidence.  



 162 

 

Finally, the model was developed to handle to the mass balance terms from both 

diffusion and fast acid-base reactions. Two reactions, protein dissociation and water 

dissociation, happened spontaneously in the dynamical swelling. Therefore in the 

original equations, reaction terms were involved in mass balance equations. The 

problem with solving these equations is that the reaction rates for each reaction are 

sometimes high leading to stiffness of the equations. The model of Di Toro (1976) 

was studied to find out how to use equilibrium equations instead of reaction terms to 

ensure stability solutions. The example of Di Toro was carbon dioxide dissolved in 

water equilibrium. Three dissociation constants were associated with three reactions. 

Species involved in the carbon dioxide dissolution were identified as CO2, HCO3
-
, 

CO3
2-

, H
+
, H2O and OH

-
. Then components were chosen as CO2, H

+
 and H2O. The 

species matrix was formulated by multiplication a formula matrix with the component 

matrix. The transformation matrix was obtained by the transpose of the formula 

matrix. Different component choices resulted in different formula matrix and hence 

different transformation matrix. With a chosen component matrix multiplying both 

sides of the original equations with its transformation matrix the reaction terms were 

eliminated. For components chosen as CO2, H
+
 and H2O, the formula matrix was 

defined by equation (2.7.51). The transformation matrix was defined by equation 

(2.7.57). It was then found that reaction rates were cancelled out in the new equations 

(2.7.60). It was shown that the choice of components was not limited to get the 

alternative equations with zero reaction rates. Practically atoms were often used as 

components. In the protein gel swelling, atoms, H and O, were used as components. 

By using Di Toro‘s method, mass balance equations of the thesis model were solved 

without the presence of reaction terms. Interestingly Di Toro‘s approach seems to 

have been lost and was ―re-invented‖ by Moe et al. (1995) and Kakhu and Pantelides 

(2003). 

 

After each piece of the gel swelling model was finally put together, great efforts were 

put into COMSOL in the hope that COMSOL could solve the model equations.  
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With the examples in Section 3.2 and 3.3, the steps involved in COMSOL simulation 

were understood and successfully used. After the equation coefficients, constants and 

variables were all set in COMSOL, there were two important steps to be done before 

COMSOL simulation. 

 

Firstly it was necessary for COMSOL to have well defined initial conditions. The 

given initial values were the volume fraction of the total protein, 10% and the pH 

inside the protein, 7. The initial concentration of H
+ 

was defined by the given pH and 

hence the initial concentration of OH
-
. The initial concentrations of the total protein 

and water were defined by the volume fraction. The initial concentration of 

undissociated H in the protein was obtained by the total protein concentration. The 

initial concentration of Cl
-
 was set to be an arbitrary value and finally the initial 

concentration of Na
+
 was calculated by electroneutrality. After the initial 

concentration of each component was well defined, the initial concentrations of H and 

O were defined. Unless the initial values were set up rigorously, COMSOL was 

unable to proceed. 

 

Secondly it was very important to set good boundary conditions for COMSOL. There 

were two considerations for the boundary setting. Firstly, it was considered that there 

was no external resistance between the gel and the bulk. Further, the concentrations in 

the protein gel could be set equal to those in the bulk at the boundary; the protein gel 

could be treated as a porous model. Therefore, the concentrations in the protein gel 

pores were equal to those in the bulk at the boundary. A relationship between the pore 

concentrations with the total protein concentration was needed. It was similar to the 

partition coefficient in dialysis models. Alternatively, the concentrations in the gel at 

the boundary could be defined as a function of the bulk concentrations via some form 

of equilibrium, such as the Donnan equilibrium. Secondly, an external resistance 

between the gel and the bulk was considered. In other words, there was a liquid 

boundary layer between the gel and the bulk. This was the same as the first one 
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because boundary concentrations for the gel and liquid boundary layer interface were 

still needed. Therefore the boundary conditions used in COMSOL were that the 

concentrations in the protein gel equal to those in the bulk. 

 

Then several trial runs were carried out by COMSOL and problems occurred in 

converging the solution. The first problem encountered was that COMSOL failed to 

find consistent initial values. Checking the model, it was found that there were sharp 

increases or decreases in the concentrations at the boundary shown by Figure 6.1. 

Strong transient signals in the boundary were introduced. It was very difficult for the 

time-stepping algorithm to resolve the transient. The time step could be very small, 

and the solution time might be very long, or the solution process might even stop. For 

most parameters tested, the solution process stopped. To ensure that the boundary 

conditions were consistent with the initial conditions, they were ramped up over a 

finite time from equilibrium initial conditions to the desired boundary conditions. 

Doing this would avoid the discontinuity when concentrations at the boundary 

changed instantaneously. There are several smoothed functions available in COMSOL, 

such as flc1hs, a smoothed Heaviside function with a continuous first derivative 

without overshoot, and flc2hs, a smoothed Heaviside function with a continuous 

second derivative without overshoot. The second one, flc2hs, was used in the 

modelling. The smooth transition at the boundary is shown by Figure 6.2. The 

inconsistent initial problem was finally solved. 
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Figure 6.1 The concentration of OH

-
 at boundary at a small time step of 10

-5
 s with pH=11 

 

 

Figure 6.2 The concentration of OH
-
 at boundary at a small time step of 10

-5
 s with pH=11 after 

applying flc2hs 

 

The second problem was negative concentrations of H
+
 and OH

-
 which were found 

during the post-processing. To solve this problem a very small absolute tolerance of 

10
-12

 was used since the concentration of H
+
 was around 10

-11
 when pH was 11. This 

did not help. Reducing the absolute tolerance did not solve the problem because the 

absolute and relative tolerances controlled the error in each integration time step. H
+
 

was used in the algebraic equation to calculate H and it was the derivative of H that 

was controlled by the absolute tolerance. A new concentration, which was 10
6
 times 

the concentration of H
+
, was introduced. It failed as well. The concentrations of H

+
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and OH
-
 were defined as global expressions in COMSOL instead of calculating in the 

equation system. This forced explicit calculation of these concentrations rather than 

solution by Newton‘s method. This solved the problem. 

 

Then it was found that COMSOL solutions were not satisfactory as shown by the 

unexpected jumps in Figure 5.12 and 5.18. It was realised that there were two possible 

frames of reference in the swelling model. The fluxes relative to the protein gel matrix 

should be solved in the material frame. The point equations should be solved in the 

spatial frame. It was wrong to use one frame in the simulations. However, COMSOL 

failed in solving the model equations when two frames were used in the simulation. 

This made us suspicious about the ability of COMSOL to handle situations with a 

very strict conservativeness requirement. Given the sensitivity of the model to H
+
 

concentration, mass conservation is an absolute requirement. Therefore, a simple 

swelling model was solved by both COMSOL and MATLAB to check the mass 

conservation. It was found that mass was not conserved in COMSOL calculation 

shown by Table 5.1 and 5.2. Therefore, COMSOL was not a good choice to solve the 

swelling model of this thesis. 

6.2  Conclusions 

Although it was found that COMSOL could not be used as a numerical method to 

solve the model equations, some conclusions can be made as follows: 

 

1) The model was able to describe the dynamic behaviour of diffusion in 

polyelectrolytes and it predicted that the equilibrium swelling degree of the gel 

was decreased with high concentration of salts in the bulk solution.  

 

2) The model included thermodynamic factors in the GMS equations and it was 

found that the non-ideal effect was not always small and it depended on the 

activity coefficients of the species.  
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3) It is not limited to protein gels with electrolytes. The model is also applicable 

to drug delivery system provided that the diffusion coefficients are available. 

 

4) In contrast to earlier models, like Fickian diffusion model, the GMS model can 

be easily extended. 

 

5) It was found that COMSOL Multiphysics failed to solve the model equations 

because the Galerkin finite element method within COMSOL did not conserve 

mass.  

6.3  Future work  

A complete mathematical model of protein gel swelling has been established. 

Satisfactory solutions could not be obtained by using the COMSOL Multiphysics 

method. There is no software available to solve the gel swelling problem. CFD 

software such as CFX is based on the finite volume method which can ensure 

conservativeness in the control volume but it is not flexible enough to use user- 

defined equations. Therefore, the most important future work should be focus on 

writing the programming code for a finite volume method to solve the system in three 

dimensions. After successfully programming it would be good to investigate the 

swelling of the gel with the influence of the pH and the salt concentration in the bulk. 

 

There are also several improvements that could be made to this model. Firstly, the 

pressure model could be improved. However there is little hope that a more accurate 

pressure model could be obtained by using rubber elasticity theory. A large amount of 

new research possibly in a different field could be required to obtain a better pressure 

model for swelling gels. Secondly, the Manning condensation theory in the 

thermodynamic non-ideality needs to be investigated further. Manning condensation 

theory used in the thesis was set up for the system of a gel and a simple salt such as 
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NaCl. Only one counter-ion and co-ion were in the polyelectrolyte system. For the 

system of a gel with multiple ions, the accuracy of the Manning‘s model needs to be 

studied. A modified Manning condensation theory could be needed. Manning 

condensation theory was accurate for very dilute polyelectrolyte solutions. Future 

research could focus on how to include the short range interaction in the Manning‘s 

original theory and hence the performance of the Manning theory in concentrated 

regions could be improved. Possibly studies of ions around individual proteins could 

be extended to yield ion activities in polyelectrolyte studies. Experiments would be 

needed to validate the accuracy of the modified Manning‘s model. 
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Appendix A  

Ternary gaseous diffusion in a Stefan tube 

In 1975, Carty and Schrodt presented an experimental study in which a gas mixture of 

acetone and methanol was diffusing in a Stefan tube through stagnant air. This study 

has been already used for the validation of methods for the numerical resolution of the 

MS equations. Here, it was used as an example for the numerical approach presented 

in the Section 3.2. In the following, the subscripts 1, 2 and 3 indicate acetone, 

methanol, and air, respectively. In the study of Carty and Schrodt, air was considered 

as a pure component since the diffusivities of acetone and methanol in oxygen and 

nitrogen are very similar. In the experimental setup, at the bottom of the tube, a film 

of a liquid mixture of acetone and methanol continuously flowed, so that the 

gas-phase concentrations close to the liquid-gas interface were considered constant. In 

one of their experiments the composition of the vapour at the liquid surface was x1= 

0.319 and x2=0.528. At the top of the tube, a stream of dried air swept away the 

vapours of acetone and methanol, so that x1=0, x2=0 and x3=1. The temperature was 

328.5 K and the pressure was 99.4 kPa, and along the tube (0.238 m long), air was 

stagnant. For the simulation, the experimental value of the MS diffusivities at constant 

temperature (328 K) and pressure (1 atm) of acetone and of methanol in air were 

13.72×10
-6

 m
2
s

-1 
and 19.91×10

-6
 m

2
s

-1
 respectively. The diffusivity of acetone in 

methanol was not experimentally available and was estimated to be 8.48 × 10
-6

 m
2
s

-1
. 

This problem is depicted schematically in Figure A.1. Taylor and Krishna (1993) 

reported the following exact values of fluxes of acetone and methanol which they 

calculated numerically using a fourth-order Runge-Kutta method: N1=1.783×10
-3

 

mol/m
2
s and N2=1.783×10

-3
 mol/m

2
s which were in excellent agreement with the 

values determined experimentally by Carty and Schrodt (1975): N1=1.779×10
-3

 

mol/m
2
s and N2=3.121×10

-3
 mol/m

2
s. The flux of air was kept at zero. 
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The Maxwell-Stefan flux equations for an ideal ternary mixture of neutral species, 

when written in terms of the molar fluxes Ni and with concentration gradients as the 

only driving force, are 

 
∇𝑥𝑖 =∑

𝑥𝑖𝑵𝑗 − 𝑥𝑗𝑵𝑖

𝑐𝑡𝐷𝑖𝑗

3

𝑗=1

 (A.1)  

 

 

Figure A.1 Schematic diagram of ternary gaseous diffusion in a Stefan tube (Taylor and Krishna, 1993) 

  

x1=0.319, x2=0.528, x3=0.153 

z=0 (inlet) 

P=99.4 kPa 

T=328.5 K 

x1=0, x2=0, x3=1 

z=l=23.8 cm (outlet) 
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Appendix B 

Diffusion of HCl as two ions (Lu, 2007) 

This system consists of three components: hydrogen ion (component 1), chloride ion 

(2) and water (3). Water is chosen to be the reference component. The diffusion 

distance was set to 1 mm. 

 

The GMS equation: 

Since water is the reference frame and diffusion is only one dimension z, the resulting 

GMS equation for hydrogen and chloride ion in matrix form is: 

 

[
𝑱1
𝑱2
] = −𝑐𝑡 [

𝑥2
𝐷12

+
𝑥3
𝐷13

−
𝑥1
𝐷12

−
𝑥2
𝐷12

𝑥1
𝐷12

+
𝑥3
𝐷23

]

−1

[

∆𝑥1
∆𝑧
+ 𝑥1𝑧1

ℑ

𝑅𝑇

∆𝜙

∆𝑧
∆𝑥2
∆𝑧
+ 𝑥2𝑧2

ℑ

𝑅𝑇

∆𝜙

∆𝑧

] (B.1)  

 

Transport equation: 

The mass balance equation used here is: 

 𝜕𝑐1
𝜕𝑡
= −∇ ∙ 𝑱1

𝜕𝑐2
𝜕𝑡
= −∇ ∙ 𝑱2

 (B.2)  

 

No net flux condition: 

 𝑱1𝑧1 + 𝑱2𝑧2 = 0 (B.3)  

 

Boundary conditions: 

It is found that it is more reasonable to set one side as zero diffusion potential with 

0




z


 on the same side. The concentration of HCl on the left side was set to 0.018 

mol/L, the right was set to 0. 
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Diffusion coefficients: 

The diffusion coefficients in this model are: 

 𝐷𝐻+,𝑤𝑎𝑡𝑒𝑟 = 9.3 × 10
−9 m2/s

𝐷𝐶𝑙−,𝑤𝑎𝑡𝑒𝑟 = 2.0 × 10
−9 m2/s

 (B.4)  

 

Initial conditions: 

Initially, zero concentration is inside gel and the solution should be electrically neutral 

everywhere as described by: 

 𝑥1𝑧1 + 𝑥2𝑧2 = 0 (B.5)  
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Appendix C 

Diffusion of HCl and NaCl (Lu, 2007) 

The case considers diffusion in a multi-electrolyte system. The difference between 

this case and the previous one is that there is an additional ion, Na
+
, in the system. 

According to Wesselingh and Krishna (2000), hydrogen chloride in water diffuses 

down its concentration gradient. So does sodium chloride.  However, in the mixture 

of hydrochloric acid and sodium chloride, sodium might diffuse against its gradient, 

in the direction opposite to what we expect from Fick‘s law. This is caused by the 

electrical field generated by the H
+
 ions of the HCl, which diffuse more rapidly than 

the others. 

 

System model: 

This system consists of four components: hydrogen ion (component 1), chloride ion 

(2), sodium ion (3) and water (4). Water is chosen to be the reference component. 

 

The GMS equation: 

Since water is the reference frame and diffusion is only one dimension z, the resulting 

GMS equation for the three components except water in matrix form is: 

 
[
𝐽1
𝐽2
𝐽3

]

= −𝑐𝑡

[
 
 
 
 
 
𝑥2
𝐷12

+
𝑥3
𝐷13

+
𝑥4
𝐷14

−
𝑥1
𝐷12

−
𝑥1
𝐷13

−
𝑥2
𝐷12

𝑥1
𝐷12

+
𝑥3
𝐷23

+
𝑥4
𝐷24

−
𝑥2
𝐷23

−
𝑥3
𝐷13

−
𝑥3
𝐷23

𝑥1
𝐷13

+
𝑥2
𝐷23

+
𝑥4
𝐷34]
 
 
 
 
 
−1

 

(C.1)  
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[
 
 
 
 
 
∆𝑥1
∆𝑧
+ 𝑥1𝑧1

ℑ

𝑅𝑇

∆𝜙

∆𝑧
∆𝑥2
∆𝑧
+ 𝑥2𝑧2

ℑ

𝑅𝑇

∆𝜙

∆𝑧
∆𝑥3
∆𝑧
+ 𝑥3𝑧3

ℑ

𝑅𝑇

∆𝜙

∆𝑧]
 
 
 
 
 

 

Transport equation: 

The mass balance equation used here has the same form as previously: 

 𝜕𝑐1
𝜕𝑡
= −∇ ∙ 𝑱1

𝜕𝑐2
𝜕𝑡
= −∇ ∙ 𝑱2

𝜕𝑐3
𝜕𝑡
= −∇ ∙ 𝑱3

 (C.2)  

 

No net flux condition: 

 𝑱1𝑧1 + 𝑱2𝑧2 + 𝑱3𝑧3 = 0 (C.3)  

 

Diffusion coefficients: 

The diffusion coefficients in this model are chosen from Table 3.1.1 (Lu, 2007): 

 𝐷14 = 9.3 × 10
−9

𝐷24 = 2.0 × 10
−9

𝐷34 = 1.3 × 10
−9

 (C.4)  

The diffusion coefficient of ion and ion pairs can be calculated by: 

 
𝐷12 =

𝐷14 + 𝐷24
2

𝑖0.55

|𝑧1𝑧2|2.3

𝐷23 =
𝐷24 + 𝐷34

2

𝑖0.55

|𝑧2𝑧3|2.3

 (C.5)  

where 

 𝑖 =
1

2
(𝑧1
2𝑥1 + 𝑧2

2𝑥2 + 𝑧3
2𝑥3) (C.6)  

D13 can also be calculated with the same equation but with a negative sign. 

 

Initial conditions: 

Initially, the solution should be electrically neutral everywhere as described by: 

 𝑥1𝑧1 + 𝑥2𝑧2 + 𝑥3𝑧3 = 0 (C.7)  
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There were 0.018 mol/L of HCl and 0.002 mol/L of NaCl inside an open matrix. 

 

Boundary conditions: 

There were 0.018 mol/L of HCl and 0.03 mol/L of NaCl in the right boundary. The 

right side diffusion potential was set to be zero. 
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Appendix D 

The complete equations of protein gel swelling 

In this section the complete set of mdelling equations are presented as follows: 

Mass balance equations: 

 𝜕𝑐𝐻
𝜕𝑡
+ ∇ ∙ 𝑵𝐻 = 0

𝜕𝑐𝑂
𝜕𝑡
+ ∇ ∙ 𝑵𝑂 = 0

𝜕𝑐4
𝜕𝑡
+ ∇ ∙ 𝑵4 = 0

 (D.1)  

with cH and cO defined by: 

 𝑐𝐻 = 𝑐1 + 𝑐2 + 2𝑐3 + 𝑐7
𝑐𝑂 = 𝑐2 + 𝑐3

 (D.2)  

and NH and NO defined by: 

 𝑵𝐻 = 𝑵1 +𝑵2 + 2𝑵3 +𝑵7
𝑵𝑂 = 𝑵2 +𝑵3

 (D.3)  

with Ni: 

 𝑵𝑖 = 𝑱𝑖
𝑛 + 𝑐𝑖𝒖𝑝 (D.4)  

The concentration of Na
+
, c5, is calculated by electrical neutrality: 

 𝑐1 − 𝑐2 − 𝑐4 + 𝑐5 + 𝑧𝑝𝑐6 = 0 (D.5)  

with c1 and c2 defined by: 

 𝑐1 = 10
−𝑝𝐻

𝑐2 = 10
𝑝𝐻−14 (D.6)  

Equations (D.2) and (D.6) form four equations with variables c1, c2, c3 and pH. 

Protein charge zp is obtained by: 

 
𝑧𝑝 = ∑ 𝑁𝑘,𝑗𝑧𝑗

10𝑧𝑗(𝑝𝐾𝑎𝑗−𝑝𝐻)

10𝑧𝑗(𝑝𝐾𝑎𝑗−𝑝𝐻) + 1
𝑗=𝑎𝑚𝑖𝑛𝑜 𝑎𝑐𝑖𝑑𝑠

 (D.7)  

The total protein, c6, is calculated by: 

 𝑐6𝑉̅𝑝 + 𝑐3𝑉̅3 = 1 (D.8)  

c7 and up are calculated by: 
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𝑐7 = 𝑐6 ∑ 𝑁𝑘,𝑗

1

10(𝑝𝐻−𝑝𝐾𝑎𝑗) + 1
𝑗=𝑎𝑚𝑖𝑛𝑜 𝑎𝑐𝑖𝑑𝑠

 (D.9)  

 ∇ ∙ (𝑱3
𝑛𝑉̅3 + 𝒖𝑝) = 0 (D.10)  

The diffusion fluxes, Ji
n
, are determined by the GMS equations: 

 

[
−𝑐𝑡 (Γ∇x +

(c ∙ V̅ − ω)

𝑐𝑡𝑅𝑇
∇𝑃)

…………………………………
0

] = [
[B] ⋮ [c ∙ z]

⋯⋯⋯ ⋮ ⋯⋯⋯
[z] ⋮ 0

] [

[𝐉𝑛]
⋯⋯
𝔍

𝑅𝑇
∇𝜑
] (D.11)  

B is an n-1 square matrix with elements: 

 
𝐵𝑖𝑖 =∑

𝑥𝑗

𝐷𝑖𝑗
𝑗≠𝑖

  𝑖 = 1,… , 𝑛 − 1

𝐵𝑖𝑗 = −
𝑥𝑖
𝐷𝑖𝑗
  𝑖 ≠ 𝑗

 (D.12)  

Pressure term is calculated by: 

 
𝑃 =

𝑁𝑘𝑇

𝑉
0(
𝑉

𝑉0
*

2
3
− 11 (D.13)  

Thermodynamics: 

 
𝛤𝑖𝑗 = 𝛿𝑖𝑗 + 𝑥𝑖

𝜕 ln 𝛾𝑖
𝜕𝑥𝑗

|
𝑇,𝑃,∑

 (D.14)  

Calculation of activity coefficients in multielectrolytes (M for a cation and X for an 

anion): 

 
𝑙𝑛(𝛾𝑀

𝑚) = 𝑧𝑀
2 𝐹 +∑𝑚𝑎(2𝐵𝑀𝑎 + 𝑍𝐶𝑀𝑎)

𝑎

+∑𝑚𝑐 (2Φ𝑀𝑐 +∑𝑚𝑎𝜓𝑀𝑐𝑎
𝑎

+

𝑐

+∑∑𝑚𝑎𝑚𝑎,𝜓𝑀𝑎𝑎,

𝑎,𝑎

+ 𝑧𝑀∑∑𝑚𝑐𝑚𝑎𝐶𝑐𝑎
𝑎𝑐

 

(D.15)  
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𝑙𝑛(𝛾𝑋

𝑚) = 𝑧𝑋
2𝐹 +∑𝑚𝑐(2𝐵𝑐𝑋 + 𝑍𝐶𝑐𝑋)

𝑐

+∑𝑚𝑎 (2Φ𝑋𝑎 +∑𝑚𝑐𝜓𝑐𝑋𝑎
𝑐

+

𝑎

+∑∑𝑚𝑐𝑚𝑐 ,𝜓𝑐𝑐 ,𝑋
𝑐 ,𝑐

+ |𝑧𝑋|∑∑𝑚𝑐𝑚𝑎𝐶𝑐𝑎
𝑎𝑐

 

(D.16)  

The above activity coefficients are converted from a molal basis to a mole fraction 

basis: 

 𝛾± = (1 +𝑀𝑠𝑣𝑚±)𝛾±
𝑚 (D.17)  

Osmotic coefficient: 

 

𝜙 − 1 =
2

∑ 𝑚𝑖𝑖
[
−𝐴𝜙𝐼

3
2

(1 + 𝑏𝐼
1
2*
+∑∑𝑚𝑐𝑚𝑎(𝐵𝑐𝑎

𝜙
+ 𝑍𝐶𝑐𝑎)

𝑎𝑐

+∑∑𝑚𝑐𝑚𝑐 , (Φ𝑐𝑐 ,
𝜙
+∑𝑚𝑎𝜓𝑐𝑐 ,𝑎

𝑎

+

𝑐 ,𝑐

+∑∑𝑚𝑎𝑚𝑎, (Φ𝑎𝑎,
𝜙
+∑𝑚𝑐𝜓𝑐𝑎𝑎,

𝑐

+

𝑎,𝑎

] 

(D.18)  

Manning‘s condensation effect on activity coefficients: 

 

𝑦𝑐𝑜𝑢𝑛𝑡𝑒𝑟 =
(𝜉−1𝑋 + 1)

𝑋 + 1
exp .

−
1
2 𝜉

−1𝑋

𝜉−1𝑋 + 2
/   (D.19)  

 

 

𝑦𝑐𝑜 = exp .
−
1
2 𝜉

−1𝑋

𝜉−1𝑋 + 2
/   (D.20)  

 

 

𝜙 =
−
1
2 𝜉

−1𝑋 + 2

𝑋 + 2
  (D.21)  

where ycounter and yco are the activity coefficients of counter-ion and co-ion calculated 

by Manning‘s condensation theory. 
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with 

 𝑋 =
𝑛𝑒
𝑛𝑠

 (D.22)  

Overall: 

 𝛾± = 𝑦±
𝑝.𝑚𝛾±

𝑚.𝑚  (D.23)  

where 𝛾±
𝑚.𝑚 is 𝛾± in equation (D.16). 

 𝜙 =  𝜙𝑝.𝑚 + 𝜙𝑚.𝑚 − 1 ≈ 𝜙𝑝.𝑚𝜙𝑚.𝑚  (D.24)  

Where ϕp.m
 is the ϕ in equation (D.21) and ϕm.m 

is the ϕ in equation (D.18) 

Water activity: 

 ln 𝑎𝑤 = −
𝑀𝑤 ∑ 𝑣𝑖𝑚𝑖𝑖

1000
𝜙 (D.25)  

 

For the non-ideal effect calculation initial conditions and boundary conditions in 

COMSOL are tabulated in Table D.1. 

 

Table D.1 Initial conditions and boundary conditions (concentrations in mol/L) 

 Initial conditions Boundary conditions 

pH 7 10 

c1 10
-7

 10
-10

 

c2 10
-7

 10
-4

 

c3 49.8561043 55.3956715 

c4 0.001 0.01 

c5 0.094901 0.0101 

c6 0.008743 0 

cH 100.03698 110.791443 

cO 49.8561044 55.3957715 

  

The equilibrium shear modulus used was 2×10
6
 Pa in non-ideal calculation. Volume 

expansion in COMSOL is determined by: 

 𝑉

𝑉0
=
𝑐60
𝑐6

 (D.26)  

 




