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Optimization of industrial processes for higher energy efficiency may be effectively carried out based on
the thermodynamic approach of entropy generation minimization (EGM). This approach provides the
key insights on how the available energy (exergy) is being destroyed during the process and the ways to
minimize its destruction. In this study, EGM approach is implemented for the analysis of optimal thermal
mixing and temperature uniformity due to natural convection in square cavities filled with porous
medium for the material processing applications. Effect of the permeability of the porous medium and
the role of distributed heating in enhancing the thermal mixing, temperature uniformity and minimi-
zation of entropy generation is analyzed. It is found that at lower Darcy number (Da), the thermal mixing
is low and the heat transfer irreversibility dominates the total entropy generation. In contrast, thermal
mixing is improved due to enhanced convection at higher Da. Friction irreversibility is found to dominate
the total entropy generation for higher Prandtl number (Pr) fluids at higher Da, whereas the heat transfer
irreversibility dominates the total entropy generation for lower Pr fluids. Based on EGM analysis, it is
established that larger thermal mixing at high Darcy number may not be always recommended as the
total entropy production is quite large at high Darcy number. Overall, it is found that the distributed
heating methodology with multiple heat sources may be an efficient strategy for the optimal thermal
processing of materials.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

EGM (entropy generation minimization) is a thermodynamic
approach of optimization of engineering systems for higher energy
efficiency [1,2]. The EGM approach has been applied to optimize
various systems such as microchannels [3], fuel cells [4], heat
exchangers [5,6], environmental control of aircraft [7], combustion
in porous media [8], reactors [9], power generation [10], thermal
storage [11], diesel engines [12], two-phase flow [13] and solar-
related applications [14,15].

Natural convection in porous enclosures with discrete heat
sources has important applications in electronic packaging [16],
cooling of nuclear reactors [17], ignition of solid fuels [18] etc. El-
Khatib and Prasad [19] numerically investigated the effects of
stratification on thermal convection in a horizontal cavity filled
with fluid-saturated porous medium with a localized heat source
on the bottom surface and varying the temperature linearly on the
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side walls. Robillard et al. [20] studied the multiple steady states in
a confined porous medium with localized heating from the below.
Lai and Kulacki [21] performed numerical and experimental studies
on free and mixed convection in horizontal porous layers with
multiple, isothermal, discrete heat source for various Rayleigh and
Peclet numbers. Hsiao et al. [22] solved the problem of natural
convection in an inclined porous cavity with discrete heat source
on a wall. Effects of variable heat source spacing and heat source
width on the enhancement of heat transfer and pressure drop in
a partially porous channel with discrete heat sources were analyzed
by Hadim and Bethancourt [23]. Heindel et al. [24] performed
experimental and numerical studies on natural convection heat
transfer by modelling dense parallel plate fin array on discrete heat
sources as a porous medium. Saeid and Pop [25] numerically
studied the natural convection in porous square cavity with
a discrete heat source on a vertical wall with isothermal and isoflux
boundary conditions. Recently, double-diffusive convective flow of
a binary mixture in a porous enclosure subject to localized heating
and salting from one side was studied by Zhao et al. [26].

Application of EGM method for the optimization of natural
convection in porous square cavities with discrete heat sourcesmay
be helpful in enhancing the thermodynamic efficiency of the
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system. Further, with the knowledge of irreversibilities present in
the system, the porous medium (such as metal foams for electronic
cooling applications) can be designedwith desirable characteristics.
In a thermal convection system, the irreversibilities are due to heat
transfer and fluid friction. Perusal of literature reveals that, only few
studies have been reported on the entropy generation due to
natural convection in enclosures filled with porous media. Baytas
[27] studied the entropy generation in a differentially heated
inclined square porous cavity and analyzed the effect of Darcy
modified Rayleigh number and Bejan number on the entropy
generation for various degrees of inclination. Mahmud et al. [28]
have studied the entropy generation characteristics in wavy
enclosures filled withmicrostructures that weremodeled as porous
medium. They reported that the high irreversibility is exhibited in
cavities with lower aspect ratio in the phase-plus mode, while
higher aspect ratio in the phase-minus mode exhibit low irre-
versibility. Zahmatkesh [29] investigated the effect of thermal
boundary conditions on the entropy generation in a porous cavity
with a hot bottom wall and cold side walls and found that the
entropy generation rate is high for uniform heating of the
isothermal bottomwall case compared to the non-uniform heating
case. Further, Varol et al. [30] have numerically studied the entropy
generation due to natural convection in non-uniformly heated
porous isosceles triangular enclosure positioned at various incli-
nations and they concluded that the highest entropy generation
due to heat transfer and fluid friction is observed at F ¼ 90�. To
authors’ knowledge, the studies on entropy generation due to
natural convection in porous enclosures with discrete heat sources
have not been reported till date and that forms the objective of the
current study.

The aim of this study is to analyze the entropy generation during
natural convection in porous square cavities that are heated
Fig. 1. Schematic diagrams of the cavities for different cases. Top wall is adiabatic. Thick line
differentially and discretely. A square cavity involving the
isothermal hot bottomwall, the cold side walls and an adiabatic top
wall is considered initially. The entropy generation for the casewith
isothermal hot bottom wall is studied and that is compared with
entropy generation for two other configurations where the square
cavities are heated with discrete isothermal heat sources as shown
in Fig. 1. This analysis has significance in thermal processing
applications such as molten metals infiltration in porous media
[31], drying and transport of gases in porous media [32], enhanced
oil recovery by hot-water flooding in porous beds [33], combustion
of heavy oils in porous reservoirs [34] etc. A generalized non-Darcy
model proposed by Vafai and Tien [35], with Forchheimer inertia
term being neglected, is employed to model the porous medium. In
the current study, Galerkin finite element method has been
employed to solve the non-linear equations of fluid flow, energy
and entropy. Simulations are carried out for a range of parameters,
Da ¼ 10�3e10�6, Ra ¼ 103e106 and Pr ¼ 0.015 (molten metals), 0.7
(air or gaseous substances), 10 (aqueous solutions), 1000 (olive/
engine oils). A detailed analysis on the effect of permeability of
porous medium on the entropy generation due to heat transfer and
fluid friction irreversibilities is presented via local entropy maps.
Further, the influence of Darcy number on the variation of total
entropy generation and on the competition of thermal and fric-
tional irreversibilities in various cases is presented.

2. Mathematical formulation and simulation

The physical domains of different cases are shown in
Fig. 1(a)e(c). Isothermal heat sources are represented by thick lines
and the remaining sections are maintained cold isothermal except
for the top adiabatic wall. The total dimensionless length of the
heat sources in cases 2 and 3 is equal to 1, which is same as that in
represents the uniformly heated section while remaining sections are maintained cold.
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case 1. All the physical properties are assumed to be constant,
except the density in buoyancy term. The change in density due to
temperature variation is calculated using Boussinesq approxima-
tion. Another important assumption is that the local thermal
equilibrium (LTE) is valid i.e., the temperature of the fluid phase is
equal to the temperature of the solid phase everywhere in the
porous region. The momentum transfer in porous medium is based
on generalized non-Darcy model proposed by Vafai and Tien [35].
However, the velocity square term or Forchheimer term which
models the inertia effect is neglected here as in the present case,
only natural convection flow in porous medium is studied in an
enclosed cavity. The inertia effect is more important for large fluid
velocities in a high-porosity medium. Similar approximation of
negligible inertial effects was considered by earlier researchers
[36e38]. Under these assumptions and following Vafai and Tien
[35] with Forchheimer inertia term being neglected, the governing
equations for the steady two-dimensional natural convection flow
in a porous square cavity using conservation of mass, momentum
and energy may be written with following dimensionless variables
or numbers:

X ¼ x
L
; Y ¼ y

L
; U ¼ uL

a
; V ¼ vL

a
; q ¼ T � Tc

Th � Tc

P ¼ pL2

ra2
; Pr ¼ n

a
; Da ¼ K

L2
; Ra ¼ gbðTh � TcÞL3Pr

n2

(1)
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The boundary conditions for velocities are

UðX;0Þ ¼ UðX;1Þ ¼ Uð0; YÞ ¼ Uð1;YÞ ¼ 0
VðX;0Þ ¼ VðX;1Þ ¼ Vð0; YÞ ¼ Vð1; YÞ ¼ 0 (6)

and the boundary conditions for temperature with cases 1e4 are

q ¼ 1 ðfor hot regimeÞ
q ¼ 0 ðfor cold regimeÞ
vq

vY
¼ 0 ðfor adiabatic wallÞ

(7)

Note that, in Eqs. (1)e(7), X and Y are dimensionless coordinates
varying along horizontal and vertical directions, respectively; U and
V are dimensionless velocity components in the X and Y directions,
respectively; q is the dimensionless temperature; P is the dimen-
sionless pressure; Ra, Pr and Da are Rayleigh, Prandtl and Darcy
numbers, respectively.

The momentum and energy balance equations [Eqs. (3)e(5)] are
solved using the Galerkin finite element method. The continuity
equation (Eq. (2)) has been used as a constraint due to mass
conservation and this constraint may be used to obtain the pressure
distribution. In order to solve Eqs. (3) and (4), we use the penalty
finite element method where the pressure, P is eliminated by
a penalty parameter, g and the incompressibility criteria given by
Eq. (2) which results in
P ¼ �g

�
vU
vX

þ vV
vY

�
(8)
The continuity equation [Eq. (2)] is automatically satisfied for
large values of g. Typical value of g that yields consistent solutions
is 107. Using Eq. (8), the momentum balance equations [Eqs. (3) and
(4)] reduce to
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Expanding the velocity components (U, V) and temperature (q)
using the basis set fFkgNk¼1 as,

Uz
XN
k¼1

UkFkðX;YÞ; Vz
XN
k¼1

VkFkðX;YÞ; and qz
XN
k¼1

qkFkðX;YÞ

(11)

for

0 � X; Y � 1;

the system of equations for Eqs. (5), (9) and (10) along with
boundary conditions are solved using Galerkin finite element
method. The detailed solution procedure based on Galerkin finite
element method [39] is discussed in an earlier work [40].
2.1. Streamfunction

The fluid motion is displayed using the streamfunction (j)
obtained from the velocity components U and V. The relationships
between the streamfunction and the velocity components for two-
dimensional flows are

U ¼ vj

vY
and V ¼ �vj

vX
(12)

which yield a single equation

v2j

vX2 þ
v2j

vY2 ¼ vU
vY

� vV
vX

(13)

Using the above definition of the streamfunction, the positive
sign of j denotes anti-clockwise circulation and the clockwise
circulation is represented by the negative sign of j. The no-slip
condition is valid at all boundaries and there is no cross flow,
hence j ¼ 0 is used as residual equations at the nodes for the
boundaries. Finally, streamfunctions (j) at various nodes are
obtained via finite element post-processing as discussed in earlier
work [40].
2.2. Entropy generation

In a natural convection system of non-isothermal flows of
single-phase, viscous fluids without chemical reactions, the asso-
ciated irreversibilities are due to heat transfer and fluid friction.
According to the local thermodynamic equilibrium of linear
transport theory [1], the dimensionless form of local entropy
generation rate due to heat transfer (Sq) and fluid friction (Sj) for
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a two-dimensional heat and fluid flow in porous media in Cartesian
coordinates in explicit form is written as:
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"�
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vX
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�
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(14)
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Note that, the viscous dissipation model as proposed by Al-
Hadhrami et al. [41] is employed in Eq. (15). It may be noted that,
there are three different models for viscous dissipation for flow
through porous media. In a recent study, Hooman and Gurgenci
[42] compared the three different viscous dissipation models and
concluded that the three models are effectively same at low values
of Da but for higher limits of Da, only the model of Al-Hadhrami
et al. [41] is valid. A detailed discussion on different viscous dissi-
pation models, their limits of applicability and other relevant issues
on various aspects of modeling viscous dissipation in porous media
may be found in earlier works [43,44].

It may be noted that, the effect of viscous dissipation is
neglected in the energy equation (Eq. (5)), but that is considered for
estimation of Sj. The condition when the viscous dissipation may
be neglected in energy equation for natural convection systems is
given by the condition, Ge � 1, where Ge is Gebhart number,
defined as Ge ¼ gbL/cp. For various fluids such as molten metals,
gases at ordinary temperatures, aqueous solutions, and the viscous
fluids such as engine oils and silicones, the quantity gb/cp is very
low (wO(10�7e10�10)) and viscous dissipation effect can become
significant only for a very large values of L, which is not encoun-
tered commonly [45]. Similar studies on entropy generation during
natural convection in enclosures where viscous dissipation term is
omitted in the energy equation are reported earlier [27,30].

In the expression for Sj (Eq. (15)), the parameter f is called the
irreversibility distribution ratio and it is defined as:

f ¼ mTo
k

�
a2m

KDT2

�
(16)

In the current study, f is taken as 10�2. An order of magnitude
analysis would also give a similar result. For example, the proper-
ties for air at 298 K are in the range of m w O(10�5), k w O(10�2),
am w O(10�5), K w O(10�12) and for a representative case with
DT2/To w O(102), f is obtained as O(10�2). Here, To is the bulk
temperature, evaluated as (Th þ Tc)/2. A similar value of f was
considered by earlier researchers [30].

It may be noted that, the accurate evaluation of derivatives is
necessary for estimation of Sq and Sj. Small error in calculation of
temperature and velocity gradients would propagate to a much
larger error since the derivatives are powered to 2. As mentioned
earlier, the derivatives are evaluated based on finite element
method in this work. Current approach offers special advantage
over finite difference or finite volume solutions [27,30] where
derivatives are calculated using some interpolation functions
which are avoided in the current work and elemental basis set are
used to estimate Sq and Sj. The derivative of any function f over an
element e is written as

vf e
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¼
X9
k¼1

f ek
vFe

k
vn

(17)

where, fke is the value of the function at local node k in the element
e andFk

e is the elemental basis function. There are nine sets of basis
functions for a bi-quadratic element. Further, since each node is
shared by four elements (in the interior domain) or two elements
(along the boundary), the value of the derivative of any function at
the global node number (i), is averaged over those shared elements
(Ne), i.e.,

vfi
vn

¼ 1
Ne

XNe

e¼1

vf ei
vn

(18)

Therefore, at each node, local entropy generation for thermal
(Sq,i) and flow fields (Sj,i) are given by,
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Note that, the derivatives, vqi=vX;vqi=vY ;vUi=vX;vUi=vY;vVi=vX
and vVi=vY are evaluated following Eq. (18). The combined total
entropy generation (Stotal) in the cavity is given by the summation
of total entropy generation due to heat transfer (Sq,total) and fluid
friction (Sj,total), which in turn are obtained via integrating the local
entropy generation rates (Sq and Sj) over the domain U.
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The integrals are evaluated using three point Gaussian quadra-
ture integration method. The relative dominance of entropy
generation due to heat transfer and fluid friction is given by average
Bejan number (Beav), a dimensionless parameter defined as,

Beav ¼ Sq;total
Sq;total þ Sj;total

¼ Sq;total
Stotal

(24)

Therefore, Beav [ 0.5 implies the dominance of heat transfer
irreversibility and Beav� 0.5 implies the dominance of fluid friction
irreversibility.
2.3. Cup-mixing temperature and temperature uniformity

In order to compare the thermalmixing in various cases, the bulk
average temperature across the cavity, i.e., ‘cup-mixing tempera-
ture’ is defined. Cup-mixing temperature is the velocityeweighted



Table 1
Comparison of the present results with the benchmark
solutions of earlier works for natural convection in a porous
square cavity with air (Pr ¼ 0.71) as fluid medium at
Ram ¼ Ra � Da ¼ 1000. Present study employs 28 � 28 bi-
quadratic elements (57 � 57 grid points).

References Nu

Bejan [46] 15.800
Manole and Lage [47] 13.637
Saeid and Pop [25] 13.726
Baytas and Pop [48] 14.060
Present work 14.165

Fig. 2. Variation of total entropy generation (Stotal) and average Bejan number (Beav)
with Ra for a clear-fluid case in case 2 for Pr ¼ 1000 for different mesh sizes 20 � 20
(B), 24 � 24 (>) and 28 � 28 (7) bi-quadratic elements, which correspond to
41 � 41, 49 � 49 and 57 � 57 grid points, respectively.
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average temperature, and it is most suitable when convective flow
exists. The cup-mixing temperature (Qcup) and spatial average or
area average temperature (Qavg) are given as

Qcup ¼

Z Z
V̂ðX; YÞqðX;YÞdXdYZ Z

V̂ðX;YÞdXdY
(25)

where

V̂ðX; YÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þ V2

p
and
Fig. 3. Local entropy generation due to heat transfer (Sq,i) and fluid friction (Sj,i) for cavity w
(b) Ra ¼ 105 for Pr ¼ 0.7 (benchmark problem).
Qavg ¼

Z Z
qðX; YÞdXdYZ Z

dXdY
(26)

Further, ‘root-mean square deviation (RMSD)’ is defined to
quantify the degree of temperature uniformity in each case. Various
forms of RMSDs are defined based on cup-mixing temperature
(Qcup) and spatial average temperature (Qavg) as follows:
ith hot left wall and cold right wall with adiabatic top and bottomwalls at (a) Ra ¼ 103



Fig. 4. Isotherms (q), streamlines (j), local entropy generation due to heat transfer (Sq,i) and entropy generation due to fluid friction (Sj,i) contours for case 1 with Pr ¼ 0.015,
Da ¼ 10�6 and Ra ¼ 106.

Fig. 5. Isotherms (q), streamlines (j), local entropy generation due to heat transfer (Sq,i) and entropy generation due to fluid friction (Sj,i) contours for case 1 with Pr ¼ 0.015,
Da ¼ 10�3 and Ra ¼ 106.
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Fig. 6. Isotherms (q), streamlines (j), local entropy generation due to heat transfer (Sq,i) and entropy generation due to fluid friction (Sj,i) contours for case 1 with Pr ¼ 1000,
Da ¼ 10�3 and Ra ¼ 106.
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RMSDQcup
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

�
qi �Qcup

�2
N

vuuut
(27)

and

RMSDQavg
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

�
qi �Qavg

�2
N

vuuut
(28)

It may be noted that, the lower values of RMSD indicate higher
temperature uniformity in the cavity and vice-versa. In addition,
RMSD cannot exceed 1 as the dimensionless temperature varies
only between 0 and 1.
3. Results and discussion

3.1. Numerical procedure and validation

The computational domains consisting of 20 � 20, 24 � 24 and
28 � 28 bi-quadratic elements, which correspond to 41 � 41,
49 � 49 and 57 � 57 grid points, respectively are considered for
the study. For discrete heating situations, jump discontinuities
exist at the edges of the discrete heat sources which correspond to
mathematical singularities. The problem is resolved by specifying
the average temperature of the two walls at the hotecold junction
points and keeping the adjacent gridenodes at the respective wall
temperatures. Gaussian quadrature based finite element method
has been used in current investigation and this method provides
smooth solutions in the computational domain including the
singular points as evaluation of residuals depends on interior
Gauss points. In addition, it is ensured that the overall heat
balance is satisfied. The heat balance equation for each case may
be written as

(i) Case 1:

Nub ¼ Nub ¼ Nul þ Nur (29)
(ii) Case 2:

l0b;2Nub;2þ l0l;2Nul;2þ l0r;2Nu0r;2 ¼ l0b;1Nub;1þ l0b;3Nub;3þ l0l;1Nul;1
þ l0l;3Nul;3þ l0r;1Nur;1þ l0r;3Nur;3
(30)

(iii) Case 3:

l0b;1Nub;1þ l0b;3Nub;3þ l0b;5Nub;5þ l0l;1Nul;1þ l0l;3Nul;3þ l0r;1Nu0r;1

þ l0r;3Nu
0
r;3 ¼ l0b;2Nub;2þ l0b;4Nub;4þ l0l;2Nul;2þ l0l;4Nul;4

þ l0r;2Nur;2þ l0r;4Nur;4 ð31Þ



Fig. 7. Isotherms (q), streamlines (j), local entropy generation due to heat transfer (Sq,i) and entropy generation due to fluid friction (Sj,i) contours for case 2 with Pr ¼ 0.015,
Da ¼ 10�3 and Ra ¼ 106.
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The error in heat balance is calculated as:

e ¼

����� P
Nh

m¼1
l0j;mNuj;m

�����
hot

�
����� P

Nc

m¼1
l0j;mNuj;m

�����
cold

min

 ����� P
Nh

m¼1
l0j;mNuj;m

�����
hot

;

����� P
Nc

m¼1
l0j;mNuj;m

�����
cold

!� 100 (32)

where Nu is the average Nusselt number, l0 refers to length of
cold or hot sections, j refers to left (l), bottom (b) and right (r)
walls. Subscripts m ¼ 1,3 (cold sections) and 2 (hot section) on
each wall in case 2 whereas in case 3, m ¼ 1,3,5 (hot sections) and
2, 4 (cold sections) and Nh and Nc refer to the total number of hot
and cold sections in the cavity for given case respectively. For
each case, it is ensured that the error is less than 1% across the
range of Da.

Further, the present numerical procedure is validated for
a porous medium case where a porous square cavity, with air
(Pr¼ 0.71) as fluid, is heated isothermally on the left wall while the
right wall is maintained cold isothermal and the horizontal walls
are maintained adiabatic, similar to the problem reported by Bejan
[46], Manole and Lage [47], Saeid and Pop [25] and Baytas and Pop
[48]. The comparison of average Nusselt number with the results
reported earlier at modified Rayleigh number, Ram ¼ 1000, where
Ram ¼ Ra � Da, are presented in Table 1. It may be noted that the
error between the average Nusselt number obtained by current
numerical procedure is only 0.74% compared to the one reported by
Baytas and Pop [48].
Due to unavailability of studies on entropy generation for
natural convection flowwithin fluid-saturated porousmedium, the
proposed numerical scheme has been validated with the entropy
generation due to natural convection for a clear-fluid case. Fig. 2
depicts the mesh convergence studies for case 2 (Fig. 1(b)) filled
with clear-fluid. It is found that the values of Stotal and Beav obtained
from 49 � 49 and 57 � 57 mesh at high Ra are within 1%, and thus,
57� 57mesh has also been found to be adequate for all case studies
as shown in Fig. 1(a)e(c). It may be noted that the Sj formulation
for clear-fluid is different from that of porous medium case (Eq.
(20)) and that can be found in earlier work [49]. Using 57 � 57
mesh, the benchmark studies for entropy generation were carried
out for a differentially heated square cavity filled with clear-fluid
with hot left wall and cold right wall in the presence of adiabatic
top and bottomwalls, similar to the case reported by Ilis et al. [49].
The results in terms of streamlines, isotherms, entropy generation
due to heat transfer and fluid friction are in excellent agreement
with the earlier work [49] (see Fig. 3).

Detailed computations have been carried out for various fluids
of Pr (Pr ¼ 0.015, 0.7, 10, 1000) within Da ¼ 10�6e10�3 and
Ra ¼ 103e106 for different cases and they are discussed below.
3.2. Case 1

The schematic diagram of this case is shown in Fig. 1(a). The
bottom wall of the cavity is maintained hot isothermal while the
vertical walls are maintained cold isothermal and the top wall is
adiabatic. At low Da(10�6) and Pr ¼ 0.015, the permeability of the
porous medium is low and therefore the resistance to fluid flow is



Fig. 8. Isotherms (q), streamlines (j), local entropy generation due to heat transfer (Sq,i) and entropy generation due to fluid friction (Sj,i) contours for case 2 with Pr ¼ 1000,
Da ¼ 3.3 � 10�4 and Ra ¼ 106.
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high. Consequently, the fluid flow is weak as seen from the
magnitudes of streamfunctions (see Fig. 4). High thermal gradients
are concentrated at the lower corner regions where the singularity
exists and hence the entropy generation due to heat transfer (Sq) is
found to be very high at the lower corners with a local maxima,
Sq,max ¼ 3528. Note that, the Sq extends upto the central region,
influencing nearly the half-area of the cavity. In contrast, due to
weak fluid velocities, the frictional irreversibility is low and hence
the entropy generation due to fluid friction (Sj) is found to be
insignificant compared to Sq with Sj,max ¼ 1.

As Da increases to 10�3, the permeability of the porous medium
is increased and thus the fluid flow is intense resulting in enhanced
convective transport of heat from the bottom wall. Therefore, the
thermal gradients extend over the entire length of the bottomwall
as seen from the compression of isotherms (see Fig. 5). The corre-
sponding entropy generation due to heat transfer is found to extend
over the bottom wall, with Sq,max ¼ 3528 at the corner regions. It
may be noted that the contours of Sq are highly dense at lower
corners compared to the central zone near the bottom wall due to
larger thermal gradients at singular points. The enhanced buoyancy
driven flow transfers large amount of heat to the upper cold
portions of side walls and that results in thin thermal boundary
layer and therefore, Sq � 15 is observed at those regions. Enhanced
fluid circulation further leads to increased Sj along the top and side
walls of the cavity. High velocity gradients are induced near the
walls due to strong fluid flow resulting in global Sj,max ¼ 421.21 on
the side walls. In addition, the higher magnitudes of Sj are also
observed in the interior regions of the cavity due to velocity
gradients near the walls and due to the friction between the
counter rotating circulation cells along the vertical center line with
a local Sj,max ¼ 70. It is interesting to note that, the adiabatic top
wall acts as an active site for Sj with a local maximum of 261.14
while Sj along the bottom wall is observed to be negligible (see
Fig. 5). This is due to the fact that the secondary circulation cells of
smaller magnitudes gradually develop near the bottom wall and
that further reduces the fluid friction along the bottomwall. It will
be shown later that the total entropy generation (Stotal) in the cavity
is influenced by these weak secondary circulation cells.

As Pr increases to 1000 (Fig. 6), convection is further enhanced
in the cavity due to high momentum diffusivity of high Pr fluid. The
local Sq,max is found to be 118.19 near the top corners, while the
global maximum is observed near the lower corners. Note that,
dense contours of Sq are observed along the bottomwall indicating
high entropy generation due to high thermal gradients. The
thermal boundary layer extends upto Y ¼ 0.2 and Sq occurs along
a large region of the side walls. The side walls also act as strong
active sites of Sj with a maximum magnitude of 654.73 near the
central zones. The frictional irreversibility at the lower central
region of the cavity is found to be Sj ¼ 400 due to friction between
counter rotating circulation cells. It may be noted that the magni-
tudes of Sj at all regions are significantly higher compared to that in
Pr¼ 0.015 case as the fluid circulation is stronger for higher Prwith
jjjmax ¼ 15. It is interesting to note that, in contrast to that in
lower Pr case, the top wall does not contribute any Sj as the
circulation cells are skewed diagonally in each vertical half of the
cavity which minimizes the velocity gradients along the top wall



Fig. 9. Isotherms (q), streamlines (j), local entropy generation due to heat transfer (Sq,i) and entropy generation due to fluid friction (Sj,i) contours for case 3 with Pr ¼ 0.015,
Da ¼ 10�6 and Ra ¼ 106.
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(see Fig. 6). The qualitative features of Sq and Sj are found to be
nearly similar for Pr ¼ 0.7 and 10 cases and hence those results are
not shown for brevity.

It may be noted from the above analysis that a thermal pro-
cessing methodology based on differential heating of porous cavity
results in large entropy generation. In order to reduce the exergy
loss due to thermal and fluid irreversibilities, a distributed heating
methodology is proposed, wherein the porous medium saturated
with fluid is heated with multiple discrete heat sources along the
walls of the cavity. Two different cases are considered where the
cavity is heated with three and seven discrete heat sources
respectively, which are placed at the strategic locations. The total
dimensionless length of the discrete heat sources in both the cases
is maintained same as that in the differentially heated cavity (case
1). A detailed study on entropy generation in porous cavities due to
distributed heating methodology is discussed in the following
sections.

3.3. Case 2

This case refers to the distributed heating case where the cavity
is heated with three discrete heat sources as depicted in Fig. 1(b)).
The distributed heating resulted in q ¼ 0.4e0.5 at the core even at
low Da (figure not shown). The entropy generation due to heat
transfer was found to be concentrated near the edges of the heat
sources with Sq,max z 1936, which was about 46% reduction
compared to the Sq,max in case 1. The entropy due to fluid friction
irreversibility is observed to be negligible at lowDa as the hydraulic
resistance of the porous medium is high. As Da increases to 10�3,
multiple circulations are observed in the cavity due to discrete heat
sources (Fig. 7). As the permeability of porous media is increased,
the heat flow from each of the three heat sources is also enhanced.
Entropy generation due to heat transfer is observed along a large
portion of the side walls with Sq,max ¼ 2037.29 near the upper edges
of the heat sources of the side walls. The thermal gradients at the
central core also result in Sq ¼ 5, but the upper core region is
maintained as nearly entropy free region due to enhanced thermal
mixing that results in the uniform temperature of the fluid within
q¼ 0.5e0.6. The entropy generation due to fluid friction is observed
along the upper portion of the side walls, and in the interior region,
at the interface of the counter rotating circulation cells. It may be
noted that the active region for Sj is reduced and that spans only
within 0.65 � Y � 0.85 along the side walls whereas the active
region spans a larger region within 0.42 � Y � 0.85 in case 1 for
identical Da, Pr and Ra. Further, it is observed that Sj,max is reduced
(¼358.39) compared to that in case 1.

Fig. 8 illustrates the isotherms, streamlines and entropy gener-
ation maps due to heat transfer and fluid friction at Da¼3.3� 10�4,
Ra ¼ 106 for Pr ¼ 1000. The significance of this Da is that the
magnitudes of entropy generation due to heat transfer irrevers-
ibility (Sq) and fluid friction irreversibility (Sj) are equal and
therefore Stotal in the cavity is equally dominated by Sq and Sj. This
critical Da corresponds to the average Bejan number (Beav) of 0.5,
obtained from Beav vs Da plot shown in Fig. 12(d). The thermal
gradients are developed near the cold upper region of the cavity
and a local maximum of Sq ¼ 75.02 is observed at that region. The



Fig. 10. Isotherms (q), streamlines (j), local entropy generation due to heat transfer (Sq,i) and entropy generation due to fluid friction (Sj,i) contours for case 3 with Pr ¼ 0.015,
Da ¼ 10�3 and Ra ¼ 106.
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global maxima of Sq is observed near the hot-cold junctions of the
bottom wall with Sq,max ¼ 2032.40 in addition to the local maxima
at the hotecold junctions of the side walls with Sq ¼ 1936.96 and
1946.32, respectively. Similar to the Sq, a high frictional irrevers-
ibility is observed near the bottomwall (Sj,max¼ 74.96) as the eye of
the primary vortex occurs at the lower portion of the cavity. The
velocity gradients induced by the strong primary circulation lead to
the entropy production at the upper and lower cold regions of the
side walls. On the other hand, Sj due to secondary circulation is
observed near the heat sources of the side walls and in the interior
regionwith Sj ¼ 10. As Da increases to 10�3 (figure not shown), the
enhanced convection leads to the further increment of the
temperature and velocity gradients and therefore the local entropy
generation rate is also increased significantly.

3.4. Case 3

In this case, the heat sources are further divided into smaller
sections and they are placed at strategic locations in the cavity (see
Fig. 1(c)). It may be noted that the bulk of the fluid is retained cold
in the lower corner regions for case 2 (see Figs. 7 and 8). Therefore,
the heat sources are placed at those corners and the analysis on the
entropy generation has been carried out. Fig. 9 shows the distri-
butions for q, j, Sq and Sj for Da ¼ 10�6, Pr ¼ 0.015 at Ra ¼ 106. It is
observed that the temperature at the core region is maintained
uniformly within in 0.3e0.4 evenwhen the thermal mixing is weak
at low permeability of porous medium. Therefore, themagnitude of
Sq and Sj are found to be negligible at low Da.

As Da increases to 10�3 (Fig. 10), multiple circulations are
observed in the cavity for the fluid with Pr ¼ 0.015. Due to
enhanced thermal mixing by the multiple circulation cells the
temperature in the interior region is maintained uniformly within
q ¼ 0.3e0.5. Consequently, the thermal gradients are low and the
entropy generation due to heat transfer (Sq) is observed to be
negligible in the central core region. High values of Sq occur near the
hot-cold junctions with Sq,max ¼ 2526.87 along the bottom wall. It
may be noted that, the Sq,max is higher than that in case 2 due to
enhanced heat transfer rate in case 3. It is interesting to note the
entropy generation due to fluid friction (Sj) in this case. A
remarkable reduction in Sj is observed, as seen from the sparsely
occurring contours of Sj with small magnitudes. The frictional
irreversibility at the walls is contributed significantly by the
primary circulation cells where the global maximum of Sj
(Sj,max ¼ 78.08) is observed at the top wall. Note that, the global
Sj,max is reduced significantly by about 81.4% and 78.2% compared
to those in cases 1 and 2, respectively, for identical parameters.
Further, the entropy generation due to the friction between the
circulation cells in the interior region of the cavity is also found to
be low with local Sj,max ¼ 20.

At larger Pr (Pr¼ 1000), withDa¼ 10�3 and Ra¼ 106 (see Fig.11)
the strength of all circulation cells are found to be increased and the
primary circulation cells occur at the lower portion with
jjjmax ¼ 6:5. The qualitative features of local distribution of Sq are
observed to be similar to that for Pr ¼ 0.015 except that the Sq is
enhanced near the hotecold junctions due to enhanced heat
transfer by the stronger secondary circulation cell with jjjmax ¼ 3.
The global maximum value of Sq is also increased to 2695.34 with
the increase in Pr. The entropy generation due to fluid friction is
confined to a small regime near the side walls and at the central
lower region. It is found that Sj is significantly lower compared to



Fig. 11. Isotherms (q), streamlines (j), local entropy generation due to heat transfer (Sq,i) and entropy generation due to fluid friction (Sj,i) contours for case 3 with Pr ¼ 1000,
Da ¼ 10�3 and Ra ¼ 106.
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that in case 1 (Fig. 6) and case 2 (figure not shown). Note that,
Sj,max ¼ 264.4 and that is found to be 59.6% and 39.4% lesser
compared to those in cases 1 and 2, respectively.

Analysis of local maps of entropy generation due to heat transfer
and fluid friction in various cases indicates that the distributed
heatingmethodology significantly lowers the entropy generation in
the cavity and the intensity of Sq and Sj at the local active sites is
reduced. In the following section, a detailed discussion on total
entropy generation (Stotal) in various cases, the average Bejan
number (Beav), the thermal mixing and the temperature uniformity
in various cases are presented.

3.5. Total entropy generation, average Bejan number, cup-mixing
temperature and temperature uniformity

The three cases are analyzed for the role of total entropy
generation (Stotal) on overall heating effects within the cavity for
10�6 � Da � 10�3 at Ra ¼ 106. The variation of Stotal at Da ¼ 10�6 is
found to be same as that at Da ¼ 10�5 and hence the variations are
shown only for Da¼ 10�5e10�3 in Fig. 12(a) and (b) (Pr¼ 0.015 and
0.7) and Fig. 13 (a) and (b) (Pr¼ 10 and 1000). Further, the variation
of average Bejan number (Beav) with Da is also shown. Note that
the variation of Beav indicates the dominance of Sq or Sj. For,
Beav [ 0.5, the total entropy generation in the cavity is dominated
by heat transfer irreversibility while Beav � 0.5 indicates that the
total entropy generation is dominated by fluid friction irrevers-
ibility. The cup-mixing temperature (Qcup; Eq. (27)) is evaluated in
order to analyze the thermal mixing in different configurations of
the cavity during the convective flow. The degree of temperature
uniformity in various cases is compared by the root-mean square
deviation based on the cup-mixing temperature (RMSDQcup

; Eq.
(27)) and the average temperature (RMSDQavg

; Eq. (28)) and they are
presented in the lower panels of Figs. 12(a) and (b) and 13(a) and
(b). As mentioned earlier, higher values of Qcup indicate the
higher overall heating rate. On the other hand, the lower values of
RMSDQcup

or RMSDQavg
indicate greater temperature uniformity

within the cavity.
In general, the values of Sq are order of magnitudes larger than

Sj, and Beav is an indicator to governwhether irreversibilities due to
fluid flow are important. A smaller value of Beav indicates the
dominance of fluid flow irreversibilities and thus some available
energy is lost leading to less average heating rate. Consequently,
case 1 corresponds to a smallest Beav as well as moderate values of
Qcup. In contrast, case 2 corresponds to a lesser fluid flow intensity
resulting in smaller values of Sj. Therefore, the available energy is
larger for case 2 due to smaller fluid friction irreversibilities. As
a consequence, Qcup is larger for case 2 at higher Da. The heat
transfer irreversibilities are much larger for case 3 compared to
those for cases 1 and 2 and the contribution of Sj is less. Thus
Beav� 0.5 is observed for case 3 and Stotal is found to be much lesser
than that with cases 1 and 2 especially for higher Da. Although Stotal
is less for case 3, but overall thermal mixing temperature is found to
be least due to less intense convective transport within the cavity
for the entire Da.

The total entropy generation is found to increase with Da for all
cases (1e3) with various types of fluids. It is observed that Stotal in



Fig. 12. Variations of the total entropy generation (Stotal), average Bejan number (Beav) with Darcy number (Da) are shown in the top panels. Distributions of cup-mixing
temperature (Qcup), average temperature (Qavg) and corresponding root-mean square deviations (RMSDQcup

and RMSDQavg
) as functions of Stotal are illustrated in the middle and

bottom panels. Case 1 (d, C), Case 2 (e e e, -) and Case 3 (., :) and Ra ¼ 106. a and b represent Pr ¼ 0.015 and 0.7, respectively.
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case 3 is found to be higher during the conduction dominant
regime at low Da as the number of hotecold junctions are more in
case 3, resulting in high heat transfer rate and high Stotal. However,
it is interesting to note that, Stotal in case 3 is observed to be
significantly low, compared to that in cases 1 and 2, during the
convection dominant regime at higher Da(¼10�3). The reduction in
Stotal in case 3 is found to be large for high Pr fluids. This may be
explained based on the variation of Beav. It may be noted that Beav is
maximum and equal to 1 at low Da, indicating the dominance of Sq.
As Da increases, the contribution of Sj to Stotal increases and
therefore Beav is observed to be reduced. It may also be noted that,
the Beav decreases rapidly in cases 1 and 2 compared to that of case
3. AtDa¼ 10�3, the Beav is found to be still>0.5 in case 3 as Sj is less
dominant for case 3. However, it may be noted that Sj dominates
the entropy generation at Da ¼ 10�3 for higher Pr(0.7,10,1000)
fluids, while for Pr ¼ 0.015, Sj dominates only in cases 1 and 2 and
Sq dominates in case 3, corresponding to Beav > 0.5.

Entropy production rates play important role on overall thermal
mixing within the fluid of the cavity. It is found that Stotal is
a monotonically increasing function with Da except for case 1 at
higher Da for Pr ¼ 0.015. Therefore, the thermal mixing or unifor-
mity in temperature for various Da can be correlated. The middle
and bottom panels of figures (Figs. 12(a) and (b) and 13(a) and (b))
display mixing effects (Qcup, Qavg, RMSDQcup
, RMSDQavg

) vs Stotal. As
discussed earlier, higher degree of irreversibility for heat transfer
and fluid flow correspond to larger values of Stotal. It was observed
that, a non-monotonic trend of average or cup-mixing temperature
vs Stotal occurs for Pr ¼ 0.015 (see Fig. 12(a)). It is found that the
values ofQcup for Pr¼ 0.015 in case 1 attain themaxima andminima.
The maxima of Qcup at higher Stotal is partly due to enhancement of
local thermal mixing due to secondary cells for low Pr fluids. The
cup-mixing temperature increases with Stotal or Da for case 2 and it
is observed that there is a slight decrease inQcup at higherDa values.
It is interesting to note that the variation in Stotal for Pr ¼ 0.015 in
case 3 spans only small range and themaxima ofQcup orQavg occurs
at an intermediate value of Da as shown in Fig. 12 a.

A common trend on Qcup or Qavg vs Stotal is observed for Pr¼ 0.7,
10 and 1000. It is observed that Qcup or Qavg increases with Stotal till
Da z 10�4 and further, that slightly decreases to reach a constant
value at higher Da as well as Stotal. Smaller values of Q at higher Da
or Stotal is due to less available energy for heat transport. On the
other hand, increasing trend of Qcup or Qavg in lower Da regime is
partly due to onset of convection leading to enhanced thermal
mixing. The convection would not play a significant role beyond
a threshold value of Da as larger Stotal is an indicative of less
available heat energy for overall heating. Based on overall entropy



Fig. 13. Variations of the total entropy generation (Stotal), average Bejan number (Beav) with Darcy number (Da) are shown in the top panels. Distributions of cup-mixing
temperature (Qcup), average temperature (Qavg) and corresponding root-mean square deviations (RMSDQcup

and RMSDQavg
) as functions of Stotal are illustrated in the middle and

bottom panels. Case 1 (d, C), Case 2 (e e e, -) and Case 3 (., :) and Ra ¼ 106. a and b represent Pr ¼ 10 and 1000, respectively.
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generation, a critical value of Da may be obtained for optimal
thermal processing of various fluids or Pr.

Further, variation of RMSDQcup
vs Stotal indicates that, as the Da

increases, the temperature uniformity in the cavity is enhanced due
to convection dominance, but on the other hand, the total entropy
generation rate also increases. It may be noted that, the tempera-
ture uniformity is enhanced (lower value of RMSDQcup

) for case 2
and that is much enhanced for case 3 at identical parameters. A
similar trend is observed for the RMSDQavg

. It may be noted that the
case 3 configuration is characterized by minimum entropy gener-
ation in comparison to the cases 1 and 2 for all Pr at high Da.
Overall, it may be concluded that employing a case 3 type of
configuration for thermal processing of materials would result in
moderate thermal mixing, greater degree of temperature unifor-
mity and higher energy efficiency.

The trends of Qcup or Qavg and RMSDQcup
or RMSDQavg

draw
a competitive scenario for all fluids. Overall, fluid heating rate is
higher at an intermediate value of Da, but the temperature unifor-
mity is achieved at higher Da. On the other hand, higher Da values
may not be preferred due to higher Stotal. This poses an interesting
optimization problem to propose an efficient heating strategy with
large heating rate (Qcup or Qavg), minimal values of RMSDQcup

or
RMSDQavg
as well as minima of Stotal in presence of optimal distrib-

uted heating pattern, which will be a subject of future research.

4. Conclusion

Current work brings new insights on entropy generation during
natural convection in porous square cavities heated with differen-
tial and distributed heating methodologies. The prime challenge of
this work is based on evaluation of entropy generation for heat and
fluid flow using finite element based evaluation of derivatives. Total
entropy generation in such distributed heating systems has also
been analyzed based on spatial entropy maps for various Darcy
numbers. Such analysis for distributed heating systems is impor-
tant to understand entropy generation for efficient thermal pro-
cessing within porous bed and this has been done for the first time
in this work.

A detailed investigations on local and total entropy generation
during natural convection in the porous square cavities with
differential and distributed heating is presented. Simulations are
carried out for wide ranges of permeability of porous medium
(10�6 � Da � 10�3) which is saturated with different types of the
fluids (Pr ¼ 0.015, 0.7, 10, 1000) in the range of Ra ¼ 103e106. A
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numerical approach based on the Galerkin finite element method is
presented to obtain the local maps of velocity, temperature and
entropy generation characteristics.

The effects of permeability of porous medium on entropy
generation due to heat transfer and fluid friction irreversibilities are
depicted by the local maps of Sq and Sj. Due to low permeability of
porous medium at low Da, the heat transfer irreversibility is found
to dominate the total entropy generation in the cavity. As Da
increases, the hydraulic resistance of porous medium is reduced
and the stronger fluid circulation is observed. Consequently, the
irreversibility due to fluid friction is also found to increase and after
a critical Da, Sj dominates the entropy generation (except for
Pr ¼ 0.015 in case 3). The study on the effect of distributed heating
indicates that a significant reduction of Sj is observed in case 3 at
higher Da and Ra. Further, it is found that, with the increase in the
permeability of porous medium, the case 3 configuration results in
lowest Stotal compared to that in cases 1 and 2. It is also found that,
at high Da, Sj dominates the total entropy generation for higher Pr
fluids in all cases, whereas the dominance of Sq is observed for
lower Pr fluids (Pr ¼ 0.015) in case 3 as Beav > 0.5. Comparison of
various cases for the total entropy generation indicated that, Stotal is
significantly lower in case 3 with a greater degree of temperature
uniformity (smaller RMSDQcup

) across the cavity. The results indi-
cate that a distributed heating methodology based on case 3 type of
configuration for thermal processing of materials results in
moderate thermal mixing, higher temperature uniformity and high
energy efficiency. Finally, current work initiates a study on the
optimal heating and processing in a porous bed in order to maxi-
mize cup-mixing temperature and temperature uniformity while
minimizing total entropy generation at some intermediate Darcy
number with an optimal distributed heating policy. What is the
critical Darcy number with particular distributed heating policy?
This is yet to be resolved and subject to future research.
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Nomenclature

Be: Bejan number
Da: Darcy number
g: acceleration due to gravity, m se2

k: thermal conductivity, W me1 Ke1

l0: dimensionless length of hot/cold section
L: side of the square cavity, m
N: total number of nodes
Nu: average Nusselt number
p: pressure, Pa
P: dimensionless pressure
Pr: Prandtl number
R: Residual of weak form
Ra: Rayleigh number
RMSD: root-mean square deviation
S: dimensionless entropy generation
T: temperature of the fluid, K
Th: temperature of discrete heat sources, K
Tc: temperature of cold portions of the cavity, K
To: bulk temperature, K
u: x component of velocity
U: x component of dimensionless velocity
v: y component of velocity
V: y component of dimensionless velocity
V̂: dimensionless velocity
x: distance along x coordinate
X: dimensionless distance along x coordinate
y: distance along y coordinate
Y: dimensionless distance along y coordinate

Greek symbols
a: thermal diffusivity, m2 se1

b: volume expansion coefficient, K�1

g: penalty parameter
G: boundary
q,Q: dimensionless temperature
m: dynamic viscosity, kg me1 se1

n: kinematic viscosity, m2 se1

r: density, kg me3

F: basis functions
j: streamfunction

Subscripts
b: bottom wall
c: cold section
h: hot section
j: wall
l: left wall
m: hot or cold section
r: right wall
1,3: cold section
2: hot section
cup: cup-mixing
avg: spatial average
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