

Boundary conditions for electromagnetic transient module

Perfect electric conductor

Scattering boundary condition

Incident electric field

$$E_x=0$$

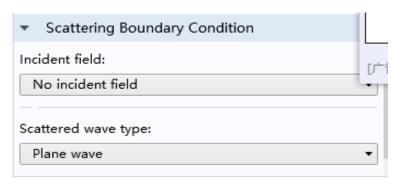
$$E_{z} = E_{0} \sqrt{\frac{w_{0}}{w(x)}} e^{-(y/w(x))^{2}} \cos\left(\omega t - kx + \eta(x) - \frac{ky^{2}}{2R(x)}\right) \exp(-(t-t0)^{2}/dt^{2})$$

where

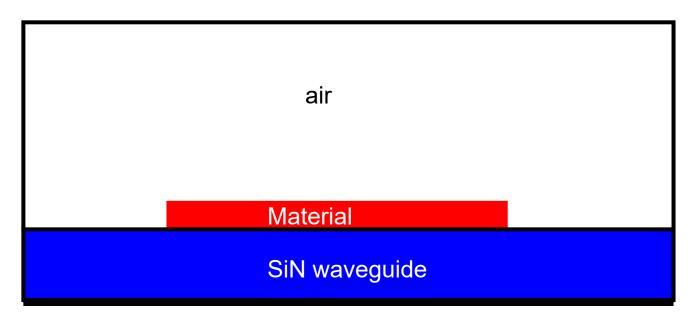
$$w(x) = w_0 \sqrt{1 + \left(\frac{x}{x_0}\right)^2}$$
$$\eta(x) = \frac{1}{2} \operatorname{atan}\left(\frac{x}{x_0}\right)$$
$$R(x) = x \left(1 + \left(\frac{x_0}{x}\right)^2\right)$$

w0 is the minimum waist, w is the angular frequency, y is the in-plane transverse coordinate, k is the wave number, x0 is the Rayleigh range, R(x) is the radius of curvature of the wavefront,  $\eta(x)$  is the Gouy phase. t0 is the time delay and dt is the pulse width.

### Scattering boundary condition



Boundary conditions for heat transfer transient module



All the boundaries are maintained at room temperature



## 🔼 Multiphysics



## Electromagnetic Heat Source 1 (emh1)

# Show equation assuming: Study 1, Frequency-Transient $\rho C_{p} \frac{\partial T}{\partial t} + \rho C_{p} \mathbf{u} \cdot \nabla T = \nabla \cdot (k \nabla T) + Q_{e}$ $Q_e = Q_{rh} + Q_{ml}$ $Q_{\mathsf{rh}} = \frac{1}{2} \mathsf{Re}(\mathbf{J} \cdot \mathbf{E}^*)$ $Q_{\mathsf{mI}} = \frac{1}{2} \mathsf{Re}(i\omega \mathbf{B} \cdot \mathbf{H}^*)$ Coupled Interfaces Electromagnetic: Electromagnetic Waves, Transient (ewt) Heat transfer: Heat Transfer in Solids (ht)

### Solve setting

■ Study 1

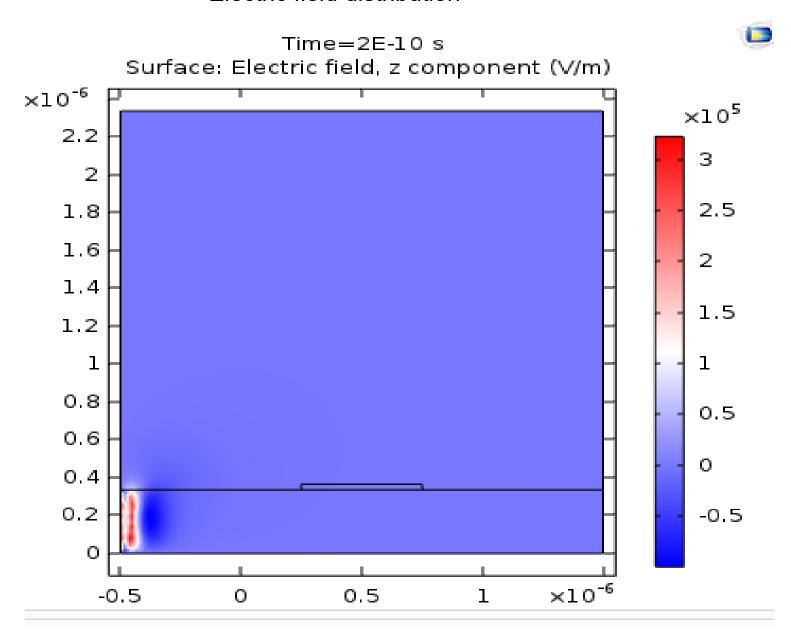
Lack Step 1: Time Dependent

Acc Step 2: Frequency-Transient

■ Solver Configurations

■ Solver Configura

### Electric field distribution



### temperature distribution

