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Notes to Dalibor and Peers

We intend to further expand these notes for a number of different reasons among which

0.1

we are motivated by creating a transparent inventory of what we know and what we do not yet know in the
finite element modelling of inductive fault current limiters. In the short term this inventory will help us further
developing three-dimensional FE simulations of the scale models of the current limiters. In the long term
these notes will serve as aid in performing future work (FE simulations of full scale limiters, creating accurate
simplified models, extending to complex networks, extend to size optimization, e.g.) and provide a basis for
similar projects (computation of eddy current losses joint with H. Polinder e.g.)

we would like to provide the Comsol Multiphysics support team and users community with feedback and ex-
amples on how we use the software as we expect that maintaining these contacts will be beneficial in future
projects.

we hope to take some of this material to our teaching, in particular to our first years calculus course (ordinary
differential equations, vector fields, .e.g.) and our scientific computing course.

Notes to Dalibor

size of the coils: in a FE model the size of the coils determines the size of the support of the source function.
Therefore the size of the coils will influence the results

distance between coils and core: I created a model that clearly shows the influence of the distance between the
coils and the code

can you create a model in Sabor of my single-period limiter?

the three-leg configuration is thinner than the open-core configuration. For the former end-effects might become
more importasnt.

in the report comparing Ansys and Comsol in 2D, the parameter [z was set wrong. This was corrected in the
new version of the report



Chapter 1

Introduction

In these notes we develop a sequence of numerical models of increasing accuracy and complexity for the current in
coils winded around ferromagnetic cores. We start by detailing analytical and semi-analytical models, build two-
dimensional finite element methods and extend these into three dimensions. Modelling results for the current wave
forms are compared with laboratory measuments on scale models of the devices under study. Initially we were mo-
tivated by comparing different configurations of so-called inductive fault current limiters. The study of these devices
was presented at the Comsol Multiphysics Users Conference 2008 in Hannover (+ reference). The configurations
we study are however representative for a wide range of other applications in AC/DC modelling such as electrical
machines, transformers and actuators. We therefore decided to document the solution to different difficulties we
encountered in the modelling in Comsol Multiphysics, hoping that you (the reader) might learn from it.

1.1 Inductive Fault Current Limiters



Chapter 2

Quasi Stationary Magnetic Fields

Maxwell equations

double curl equations for the magnetic vector potential

perpendicular current application mode

stranded conductor model - winding function



Chapter 3

Inductance and Induced Voltage

In this section we review some preliminaries used in subsequent chapters.

Goals In this chapter we aim at

e computing the induced voltage, i.e., the time variation of the magnetic flux through a multi-turn coil wounded
around the leg of a ferromagnetic core, excited by a sinusoidal current able to bring the core leg periodically in
and out of saturation;

e relating this induced voltage with the time-variation of the impedance of the coil on one hand and the magnetic
permeability of the core leg on the other;

e presenting a field-circuit coupled model allowing to compute the induced voltage for arbitrary coil-core config-
urations.

3.1 Inductance

Consider a multi-turn coil wounded around a leg of a non-linear ferromagnetic core as shown in Figure xxx. A sinu-
soidal current will induce a time-varying magnetic field and induced voltage in the core. If the amplitude of the current
is sufficiently large, the working point of the core will move along the non-linear magnetic material characteristic and
bring the core leg alternatively in and out of saturation. This implies that the magnetic permeability will periodi-
cally vary between high to low values, corresponding to desaturation and saturation state, respectively. As the coil
impedance is proportional to the permeability, the former will vary accordingly. In this section we aim at quantifying
this change in coil impedance using the magnetic energy and induced voltage.

3.1.1 Definition
e give definition of (self and mutual) inductance
e give units (Henry) and function of primary units

Vs

_ _ 2 _ 2 _ _
IH=1Wb/A=1Tm“/A=1 > m JA=1—s=1Qs (3.1

e give range of value for applications (tens of miliHenry)

3.1.2 Model of a Solenoid
3.1.3 Magnetic Energy

Consider that the volume 2 encloses the core and ferromagnetic core and has a permeability 4 = p(x,t). The
magnetic energy W, in 2 due to the magnetic flux B and field H induced due a time-varying current is given by the
volume integral

1

1
Wm(t):§/B-HdQ:§/MB-BdQ. (3.2)
Q Q



In a 2D perpendicular current formulation on a computational domain with cross-section €2, in the zy-plane and
length 7, in the z-direction (examples will be given in subsequent chapters), this formula simplifies to the surface

integral
Win(t) = %/ [B.H, + ByH,| dQ = %/ 1[By By + By By | dQ2. (3.3)
Q Q

Ty xy

In case that the magnetic field is generated by a total current I;,;(t) flowing through a coil with N; windings and
current I (t) per turn, i.e., I;+(t) = N; I(t), the magnetic energy and the coil impedance L(t) are related by

Wi (t)
2(t) -

Wo(t) = %L(t)ﬂ(t) & L(t) =2 (3.4)

Not that the impedance scales
e quadratically with Ny;
o linearly with p.

In case that p is constant (no magnetic saturation), the impedance is current independent and can therefore be computed
using any non-zero value for the current. In case that a sinusoidal current brings (a part of) the core alternatively in
and out of saturation, the impedance can be computed for a particular working condition. In configurations in which
different coils are present (AC and DC coil in the fault current limiter), the self-inductance of the coil can be computed
by considering the current in the single coil only (setting the current in the other coils equal to zero).

3.1.4 Magnetic Flux

The magnetic flux (t) passing through an oriented surface S with outward normal n is given by the surface integral

w(t):/SB-dS:/SBmdS. (3.5)

In applications of this expression we are typically interested in, the surface .S typically denotes the cross-section of the
ferromagnetic core perpendicular to the flux path. In a 2D perpendicular current formulation on the domain €2, the
surface S is then a line piece perpendicular to the y-axis extending from x = z,,, to x = x, extruded by a length £,
in the z-direction. Using the vector potential A (B = V x A ) as unknown, the above expression reduces to

o(t) = / B -ndS (3.6)
SCOI‘S
= / By dxdz (3.7
SCOT‘&
M M 9A, 0A.
= - d d B, =— .
/wm I/Zm “ox By ax] 38
T M A
= -4, dxa = (3.9)
. Ox
= L A (x=xpm,t) — A (x = T4y, t)] (3.10)
= L [A(x =am,t) — A(z =xp,1)] . 3.11)
Considering the coil to be an interconnection of /Ny flux contributions, the magnetic flux and the coil impedance are
related by
Ney(t) _ o(t)
t) =N o(t) = L(t) I(t L(t) = = —. 3.12
vlt) = Neolt) = L 1) = L(H) = ~5= = T (3.12)

Assuming that I(¢) # 0, this expression allow to compute the impedance via the magnetic flux.

3.2 Impedance

The Ohmic resistance of the wire and the inductance of a coil can be combined to form the total impedance denoted

by X and defined by
X =+VR?+w2L?. (3.13)



3.3 Induced Voltage
The voltage induced the time-varrying magnetic flux is given by

dip

‘/im = —N; Tl
d tdt

(3.14)

where the minus sign is due to Lenz’s Law. Using the flux-impedance relation (3.12) the above relation can be written
as

d
Vin LI 3.15
4= dt( ) (3.15)
In case that % = 0, this formula reduces to
d
Vina=—L—(I). 3.16
d dt( ) (3.16)

meaning that the induced voltage is large (small) when the core leg is out (in) of saturation. In models where leakage
or fringing flux appears, it is not a-priori clear how to choose the integration surface .S leading to a correct expression
for the induced voltage. This issue is resolved in the next section by integration the induced voltage density over the
cross-section of the conductor instead.

3.4 Stranded Conductor

In this section we develop a model allowing to compute the induced voltage by integrating the density over the cross-
section of the conductor. We need to describe the 3D model from which the 2D can be derived and observe that the
coil fill factor drops out in the description of the induced voltage.

3.4.1 Series Connection of Two Stranded Conductors

The induced voltage in the AC coil (with cross-section Sg. 1 and S, 2 on both siddes of the core) has two contributions
and can be computed as follows

‘/ind = ‘/ind,l + ‘/ind 2 (317)
= —sign(J,) == Niact / E. dS — sign(J. Neae b / E.dS (3.18)
aCl Sac,1 Sac,2
. Ntacez 8A Ntac z aA
_ M _ 3.1
sen(r) gt [ e as —sign(r) St [0 (3.19

where the minus sign stems from the fact that the current flows in opposite directions in both sides of the coil. An
alternative is to compute the induced voltage as

d tot
Via = N2 (3.20)
L R air
- —NtM it 2 small, (3.21)
dt
GLD =55, B (3.22)

3.5 Magnetic Field - Electrical Circuit Coupled Model

Able to compute the current limiting effect, we develop a field-circuit coupled model.



Chapter 4

Magnetic Saturation

In this section we describe the modeling of magnetic saturation in ferromagnetic materials, i.e., the modeling of the
non-linear constitute relation between the magnetic flux B (units 7") and the magnetic field H (units A/m). Using a
vector potential formulation and denoting by B = ||B||, H = ||H||, the magnetic material law typically considered is

_dH

H(B)=vB=yv.(B)B< v(B)= 7B

(B), 4.1)

where v and v (v,-) denote the reluctivity of vacuum and the material (relative reluctivity), respectively [see paper
Herbert on differential vs. chord reluctivity]. The inverse of the reluctivity is the permeability . Magnetic saturation
is such that y,.(B) is large and almost constant for small values of B and small almost constant for large values of B
and has a non-linear transition between these two extreme values (see for instance Figure xxx).

In practise engineering practise, the function v,.(B) is to be constructed from measured B-H samples. This
process makes the convergence of an FEM computation prone stagnation. We therefore consider analytical expressions
allowing to describe the function v,.(B) analytically.

Goals In this chapter we aim at
e giving different analytical expressions for the non-linear B-H -curve modelling magnetic saturation

e give an example of a measured B-H

e illustrate a least square curve fitting technique allow to match the analytical expressions to the given measured
data

To do
e add reference to rational BH-curve approximation

e add reference to Pechstein on approximating the BH-curve

4.1 Analytical Models

To do:
e make all plots of the BH-curves again

e compute the second derivative of the analytical model to see where the curvature changes from positive to
negative.

e give a plot on double axis and deduce for which value of the current the core is in saturation.



4.1.1 Rational Function Approximation

In [1] the following rational expression modelling the relative reluctivity is given (denoting by B = ||B]|)

(1 —-a)B? 1

& U = ———— 557
2b _ 2b
B? +¢ a_‘_%

Vr=a+
where the values for the parameters a, b and c are given in Table 4.1. For this models holds that
v(B=0)=a
and thus the relative permeability at B = 0 is given by 1/a and that

lim v.(B) =1

B—oo

and thus the permeability never becomes smaller than po (which is physically correct).

a | 2.12e-4
7.358
c | 1.18e6

Table 4.1: Constants Used in the Rational Approximation
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Figure 4.1: Rational Function Approximation of the B-H curve.

4.1.2 Hyperbolic Function Approximation

In [2] the following approximation is given:

4.2)

(4.3)

(4.4)

(4.5)

(4.6)

1 B
B = Cjarcsinh(CoH) & H = — sinh(—-)
Cy Ch
where the values for the parameters C'; and C' are given in Table (4.2). From this we obtain the chord permeability
B (OB
PTOE T ()
12 o CQB

Hp = —=———5
Ho  po smh(c%)

4.7)



and the differential permeability

dH _ cosh(CyB)

dB~ C1Cy
I R o
=1 cosh(CyB)
_ K C1C,
fr = to o cosh(CoB)

As in this model

gl e (52) =0

is has to be used with due care.

Remark This model requires a non-zero initial guess during intial guess to avoid the singularity at B = 0.

C; 25[T]
Cy | .06 [m/A]

Table 4.2: Constants Used in the Sinh Approximation
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Figure 4.2: Hyperbolic Function Approximation of a B-H curve.

4.2 Measured Data

In this section we give the measured B-H -data we will use in our numerical examples in subsequent chapters.

4.2.1 Measured BH data

H = [0 310 315 320 330 350 380 410 430
470 500 540 580 620 650 670 720 750
770 820 900 1000 1100 1200 1400 1800 2300
2800 3300 4300 5300 8300 10300 15300 20300 25300

30300 40300 50300 70300 100300 200300 400300 600300 800300
10003007 ;

B = [0 1.3449 1.3773 1.4003 1.4328 1.4736 1.5112 1.5367 1.5501
1.5715 1.5845 1.5991 1.6114 1.6221 1.6293 1.6337 1.6439 1.6494
1.6529 1.661 1.6724 1.6847 1.6954 1.7048 1.7209 1.7457

(4.8)
(4.9)
(4.10)

@.11)

4.12)



1.7687 1.7866 1.8012 1.8242 1.842 1.8796 1.8975 1.9299 1.9529
1.9708 1.9854 2.0084 2.0262 2.0532 2.0817 2.1371 2.1926 2.225
2.248 2.2659 1;
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Figure 4.3: B-H-curve used in tabular form.

4.3 Tuning the Analyical Models

In this section we performs a fitting of the parameters in the rational and hyperbolic approximation to the measured
data by a non-linear optimisation procedure.
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Chapter 5

Lumped Parameter Models of RL Circuits

Prior to detailing finite element models in subsequent chapters, we develop in this chapter simplified lumped parameter
approximation that serve to get an intuitive feeling and point of comparison for the subsequent models. The point of
departure for deriving lumped parameter models is the following first order ordinary differential equation relating the
voltage excitation V (¢) with the current I(t) in a circuit with an Ohmic resistance R and inductance L

i

G s O

Figure 5.1: Series connection of a resistance and inductance.

Valt) + Vi(t) = Via(t) & (L1) + RIT = Vin(t). 5.1)

The terms in the left-hand side can be identified as the induced and resistive voltage, respectively, and the equation
states that at all times the sum of the induced and resistive voltage is equal to the externally applied one. The equation
needs to be supplied with an initial value for the current.

The Ohmic resistance R determined by the electrical conductivity of the medium. In the case that the coil is
solenoid wounded N, times around a ferromagnetic core with magnetic permeability u, the impedance L can be
expressed as

S
~ = popr NP (5.2)

¢ lpath ’
where S and 445, cross-section and length of the flux path in the ferromagnetic core respectively.
In this chapter we first derive an analytical expression for the current in an RL-circuit with constant impedance
and two excitations: a constant and sinusoidally varying voltage source. These models illustrate how the presence of
an impedance causes a phase shift in and amplitude reduction of the current. In more realistic models however the
magnetic permeability p of the core changes by moving the operation point on a non-linear B-H characteristic. In a
second stage we therefore extend the model to include changes in the impedance induced by changes in the magnetic
permeability. This model assumes the coil to be a solenoid for which expression (5.2) is correct. The generalisation of
this model to more complex coil-core configurations is therefore not immediate.
Describe a mechanical equivalent: variable impedance and variable mass.

Goals In this chapter we aim at

e describing a simple model able to explain the inductive current limiting principle (including the concepts of
induced voltage and phase difference between applied voltage and current). This simple model can possibly
serve as coarse model inside an surrogate based optimisation algorithm.

11



e cxplaining why this simple model is not sufficient for the type of devices considered
To do:
1. describe drop in resistive voltage

2. describe presence of DC coil by additive constant in the flux

5.1 Constant Impedance Model
In this section we assume that % = 0. In this case, equation (5.1) reduces to

L% +RI=V(t). (5.3)

Given some initial condition, this ordinary differential equation can be solved numerically using a time-integrator
taking a time-dependent resistance (simulation of fault) into account. In order to derive analytical expressions however,

we assume from here on that % = 0. The ratio % has the dimensions of an (angular) pulsation and will be denoted

by w; from here on. The solution of the homogeneous equation to (5.3) is
I (t) = Cexp(—R/Lt) = Cexp(—wst) (5.4

where C' is chosen so to satisfy the initial conditions.

5.1.1 Constant Applied Voltage

In case that the applied voltage is constant and equal to Vj, the method of variation of constants yields that I(¢) =
C(t) In(t), where

C'(t) = Vo/Lexp(wit) = C(t) = Vo /L wy exp(wit) + Co = Vo/Rexp(wit) + Cq . (5.5)
For the current we then have

I(t) = [VO/Rexp(wlt) + CO} exp(—wst) (5.6)
V()/R + Oo exp(fwlt) y (57)

where the integration constant C is related to the initial condition I (¢ = 0) = I by
Co=1Iy—Vy/R. (5.8)

The current is then given by
\%
I(t) = EO + [Io — Vo/R] exp(—wit). (5.9)
If the relaxation time 7 = L/R is sufficiently small (i.e., if the resistance R is not too small and the inductance L is
not too large), then after a few multiples of the relaxation time, the current is independent of the initial condition and

equal to its stationary value

I(t) = %. (5.10)

5.1.2 Sinusoidally Varrying Applied Voltage

In case that the applied is sinusoidally varying, i.e., V() = Vj sin(wgt), the method of variation of constants yields
that I(t) = C(t) I1,(t), where

C'(t) = Vo /Lsin(wot) exp(wit) = C(t) = (Vo /L) / sin(wps) exp(wys) ds + Cp . (5.11)

12



for some integration constant Cy. Applying integration by parts twice yields

L/VyC(t) [1/w1 sin(wos) exp(ws s)]t — wp/w / cos(wot) exp(wys) ds + Co
= 1/wi sin(wot) exp(wit) — wo /w3 [ cos(wos) exp(w: s)] ‘
—wp Jwi / sin(wps) exp(wy s) ds + Cy

= 1/w; sin(wot) exp(wit) — wo/w? cos(wot ) exp(wit)

t
—wi Jw? / sin(wgs) exp(wys) ds + Co

Hence
1+ wg/wf] C(t) = 1/wi(Vp/L) sin(wot) exp(wit) — wo/w%(VO/L) cos(wot) exp(wit) + Cy
or
cit) = (W/L) [L sin(wot) — % cos(wot)] exp(wit) + Co
wg + w% wg + w%
Vo

T2+ [wi sin(wot) — wo cos(wot)] exp(wit) 4+ Co

_ V\/w0+w1[

Wo + w?)

sin(wot) — ————= cos(wot)] exp(w1t) + Cy

\/Wo"’% \/W0+W1

= [sm (wot) cos © — cos(wot) sin O] exp(wit) + Cy

L\/ 0+

= % sin(wot — ©) exp(wit) + Co

where we’ve introduced the phase shift

sin®  w w R
=2 & 0 = arctan(=2) = arctan( m/
cos® w; w1 L

)
and where the integration constant Cj is related to the initial condition by
Vo .
Co=1y— 5d sin(©) .
The current is then given by

Vo . Vo .
I(t) = YO sin(wot — ©) + [Io — yo sin ©] exp(—wit) .

(5.12)
(5.13)
(5.14)
(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)

(5.25)

If the relaxation time 7 = 1/w; = L/R is suffuciently large, then after a few multiples of the relaxation time, the

current is independent of the initial condition and equal to

I(t) = % sin(wpt — ©).

(5.26)

Compared with a purely resistive network, the current has both a lower amplitude and a phase shift. A large inductance

in particular will lead to a lower current value and a larger phase shift. This is illustrated in Figure 5.1.2.

5.2 Flux-Variable Impedance Model

The models developed in the previous section cease to be valid in situations in which the working point changes in
time over a range in which the permeability and therefore the impedance can no longer assumed to be constant. The
case that we will be interested in is the one in which the permeability varries along a non-linear B-H characteristic
and which time-varrying voltage source bringing the ferromagnetic core in (low permeability and impedance) and out

(high permeability and impedance) of saturation.

13
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al : | = = high inductance

current [4]
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Figure 5.2: Current in RL-circuit for different values of the inductance.

To extend our models to variable impedance cases, it turns out to be convenient to replace the current by the flux
as state variable

Y
=Llsl=—— (5.27)
v L(¥)
and to rewrite the equation (5.1) modelling an RL-circuit as
d R
l ) = ) 2
T T v Ve (5.28)

In this model the variable impedance can be computed using the non-linear characteristic data assuming the model
(5.2) for a solenoid. In this case we have that

S
L(y) = u[BW)}NZl (5.29)
path
Y0 S
n[ ]G - (5.30)

Given an inital condition (¢t = 0) = L(¢t = 0)I(¢t = 0), the ODE (5.28) can be solved numerical for the flux ¢ and
thus also for current I using (5.27).

This model extends the models of the previous section to a variable impedance and thus allow to illustrate the
inductive fault current limiting effect. This model still has limited applicability as it uses the expression for the
solenoid.
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Figure 5.3: Rational Function Approximation of the B-H curve.
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5.3 Numerical Example

In this section we employ the model developed in the previous section to illustrate how a coil with a flux-variable
impedance can work as a fault current limiter.

function [T,psi] = solve_rlcircuit(my_ctx)

%

%..Compute initial condition taking phase shift into account..

Rpre = 5; Rpost = .1; R_init = Rpre+Rpost; Tfault = 1; Vmax = 28;
L_init = lookup_-imped(0,my_ctx);

om = 2xpix*50;

X_init = sqrt(R_init"2 + om™2xL _init"2);

phase_shift = atan(omxR_init/L_init);

I_init = — Vmax/ X _init*sin(phase_shift);

psi-init = L_initxI_init;

%..Add DC component..
V_.dc = —.4;
psi-dc = L_init*xV_dc/R_init;

%..Solve ODE for the magnetic flux ..

Tend = 0.32;

options = odeset(’RelTol’ ,1e—12,’ AbsTol’ ,1e—12);

options = [];

[T, psi] = oded45( @rlcircuit ,[0 Tend], psi-init+psi_-dc ,options);

function dpsidt = rlcircuit(t,psi)
if (t<Tfault) Rline = Rpre+Rpost; else Rline = Rpost; end
Vline = V_dc + Vmaxxsin (2« pi*50xt);
Limpd = lookup_-imped(psi,my._ctx);
dpsidt = Vline — Rline/Limpdxpsi;

end

end

function Limpd = lookup_imped(psi, my_ctx);

global Limpd

btopsi = my_ctx.btopsi;

murtolL = my_ctx.murtoL;
psi_dc = my_ctx.psi_dc;
%.. Find b ..

b = psi/btopsi;

%.. Find relative permeability ..
mur = bhcurve(b);

%.. Find inductance ..
Limpd = murtoLsmur;

%.. Overwrite with an a—priori value
if (0)

Limpd = le—1;
end

15



function mur = bhcurve(b)

%..BH curve definition ..
bha = 2.12e—4;

bhb = 7.358;

bhc = 1.18¢6;

%..Define mur—b2 curve

b2 = b.xb;

nur = bha + (1—bha)*b2."bhb./(b2."bhb+bhc);
mur = 1./nur;

%..1f desired, overwrite with linear material ..

if (0)
mur = ones(size(b));
end

16



Chapter 6

Two Dimensional FE Models of Inductive
Fault Current Limiters

6.1

1.

2.

Goals

TO DO

in the first model

e choice of surface S motivated by desire to minimize influence of fringing and leakage flux
e investigate influence influence of space between coil and core

e investige influence of gap in the core

e describe three stage process in solving the model

e include impedance computation after the second stage

e describe the setting of the initial guess in assembling the first jacobian (different from jacobian specified
in femsolver!)

additional model

e open core model

e three legs model

simulate RL-circuit without having to resort analytical model for the impedance

compute the impedance of a given configuration in three different ways, using the analytical formula, the mag-
netic energy and the magnetic flux

compute the current waveform using only the AC coil, the DC coil in two different polarities and with linear
and non-linear core

check the magnetic flux density in the core legs and verify using the BH-curve to what extend the DC coils
brings the legs in saturation

investigate to what extend an ODE model allows to simulate this configuration, eventually by first computing
the impedance

investigate to what extend the geometry of the coils affects the current waveforms

document issues on time integration

17



6.2 Half Period Limiter

6.2.1 Geometry

In defining the geometry the core acts master and the coil as slaves. This corresponds to the fact that the coils are
wounded around the core.

1. the core:

(a) core variables

crwin = 12.5e-3; crwout = 37.5e-3; crwleg = crwout - crwin;
crhin = 39e-3; crhout = 63e-3;
rad = 3e-3;
(b) core:
core = fillet (rect2 (-crwout, crwout, —crhout, crhout), ’'radii’, rad)

- rect2(crwin, crwin, -crhin, crhin);
2. flux integration lines:
(a) left core leg: line from (-crwout,0) to (-crwin,0)
fluxlinel = linel ([-crwout,-crwinl], [0,0]);
(b) right core leg: line from (crwin,0) to (crwout,0)
fluxline2 = linel([crwin,crwout], [0,01);;
3. the AC coil:

(a) AC coil variables

accoilw = 10e-3; accoilh = 20e-3;
xspacer = 2e-3
accoilradin = crlegw/2+xspacer; accoilradout = accoilradin+accoilw;
coilxc = crwin+crwleg/2;

(b) AC coil:
accoil_right = rect2(accoilradin,accoilradout,-accoilh/2,accoilh/2);
accoil = accoil_right+move (accoil_right,-2xaccoilradin-accoilw,0);

accoil move (accoil,accoilxc,0);
4. the DC coil:

(a) DC coil variables

dccoilh = 10e-3; dccoilw = crwin/2;
dccoilradin = (crhout—-crhin)/2; dccoilradout = dccoilradin + dccoilh;
dccoilyc = crhin+ (crhout-crhin) /2;

(b) DC coil
dccoil_top = rect2(-dccoilw/2,dccoilw/2,dccoilradin,dccoilradout);
dccoil = dccoil_top + move (dccoil_top,0,-2+xdccoilradin-dccoilh);
dccoil = move (dccoil, 0,dccoilyc);

5. the air:
(a) air variables
airh = 400e-3; airw = 400e-3
(b) air = rect2(-airh, airh, -airw, airw);

The 1D and 2D entities in the geometry are then combined using
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clear c s

c.objs={fluxlinel, fluxline2};
c.name={’fluxlinel’,’ fluxline2’};
c.tags={"g5","’g6’ };

s.objs={air,accoil,dccoil, core};
s.name={’airl’,’accoil’,’"dccoil’,’core’};
s.tags={"gl’,"g2","9g3","gd" };

fem.draw=struct (‘c’,c,’s’,s);

fem.geom=geomcsg (fem) ;
6.2.2 Constants, Functions and Subdomain and Global Expressions
Constants

Note that a fill-factor in the coils in not used as the expression for the induced voltage in scaling invariant for the

induced voltage.

Electrical constants

w 27150
Vmax 28
Rpre 4.0
Rpost 0.1
Tfault 45e-3
Tsmooth le-3
] Core \ \
1z (Length in z-direction) 25e-3
flerwleg crwleg
crcross (Core leg cross-section) flecrwleg*lz
y AC coll \
acNt (Number of turns) 200
accross (Cross-section) accoilw*accoilh
Iac (Current value) 5
DC coil
dcNt (Number of turns) 250
dccross (Cross-section) dccoilw*dccoilh
Idc (Current value) 10
BH curve data \
linmurfe 1000
bha 2.12e-4
bhb 7.358
bhc 1.18e6
Cy 25
Co .06

Table 6.1: Constants Used

Functions Functions are used to define the different BH-curves.

Global expressions The flux variables and their derivatives are included to check the model. They are not used in
the computation as such. Flux variables are used to verify whether or not the core legs are in saturation. The flux
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derivative variables are used to check the induced voltage.

Viine = Vmazsin(wt) (6.1)
Rline = Rpre — (Rpre — Rpost) x flc2hs(t — T fault, T smooth) (6.2)
Vindl = —sign(Jz) * acNt *lz/accross x Eintl (6.3)
Vind2 = —sign(Jz) x acNt * lz/accross x Eint2 (6.4)
Vind = Vindl + Vind2 (6.5)
Bavrgl = Bintl/crwleg (6.6)
Bavrg2 = Bint2/crwleg (6.7)
fluxtl = —acNtxlzx* Btintl (6.8)
fluxt2 = —acNtxlz* Btint2 (6.9)

6.2.3 Integration Coupling Variables

We keep two variables for the induced voltage in order to be able to monitor them seperately. Subdomain integration
coupling variables for the induced voltage

A
Eintl = / Ede:/ 9 = dQ (6.10)
accoill accoill ot

0A,

ds (6.11)
accoil2 ot

accoil2

and boundary integration coupling variables for the average flux and the time-derivative of the flux

A,
Bintl = / B,dl = / _94: (6.12)
; - or
fluzlinel fluzlinel
A,
Bint2 = / B,dl = / _94s (6.13)
; - Or
fluzline2 fluzline2
d ' 2A,
Btintl = < B,dl = / LA (6.14)
dt fluzlinel fluzlinel Oz Ot
d 2A,
Btint2 = - B, dl = / L oA (6.15)
dt fluzline2 fluzline2 Oz Ot

where the minus sign in the expressions with index two take the direction of the current into account.

6.2.4 Application mode, subdomain and boundary settings

The magnetic field is modeled by a partial differential equation for the z-component of the magnetic vector potential
A, (perpendicular current model) satisfying the following equation

0A, 0

o g (B

0A,
ox

0
)+ 5o (o (B)

0A,
dy

g ) ZJZ(QC,?JJ) (6.16)

where o = 0 everywhere on (2, supplied with boundary conditions. All time-dependency is thus in the current source!

We do solve this equation with a time-stepping procedure as we need the derivative %Af in defining the induced

voltage.

e material characteristics:

— ferromagnetic core: p, through BH-curve

— coils and air: p, =1
e current exitation

. : _ o lactor Idc
— DC coil: constant current density equal to J,, 4. = :tisdc = +dcNt 7o

— AC coil: voltage driven by a sinusoidal voltage source V'line through the circuit relation given below. The

variable Itot is to be computed such that J, . = + aIC“C”;,Z‘);S = facNt Lol
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Different Application Modes In different application modes we subsequently solve for
o the impedance using three different models
o the initial guess for the transient simulation

o the non-linear transient simulation including the fault

6.2.5 ODE Settings

The current in the AC coil is modeled by a crircuit relation (an ODE) for the variable I

V;Eot = Vres + V;lnd
Rl + Vindl + Vind2

6.2.6 Numerical Results
Discuss that

e this configuration is not able to limit the during during both periods.

6.3 Open-Core Configuration

1. geometry of the AC coil changes

6.4 Three-Leg Configuration

1. new geometry

2. DC coils opposite polarity, AC coils different polarity

3. in the computation of the inductance only only AC coil needs to be taken into account
4. new integration coupling variables

5. new ODE setting

6.4.1 Source file of the open core model

% Model of two coils with pierced core
% The german BH curve requires a DC current away from zero in
% to converge

flclear fem femO

close all

%..Set switches ..
bhswtch = “hyperchord’;

%.. Number of turns and current values

%..The current in the AC coil is set to compute the inductance of the

Idc = 10;
dcNt = 250;
Tac = 5;

acNt = 200;

%..Create geometery ..

%....Core....
crwin = 12.5e-3;
crwout = 37.5e—-3;
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crwleg = crwout — crwin;

crhin = 39e-3;

crhout = 63e-3;

rad = 3e-—3;

core = fillet(rect2(—crwout ,crwout,—crhout ,crhout),’radii’,rad) —
rect2(—crwin ,crwin,—crhin , crhin);

%.... Flux integration lines ....

fluxlinel = linel([—crwout,—crwin] ,[0,0]);

fluxline2 = linel ([crwin,crwout],[0,0]);

%....AC coil ....

accoilw = 10e—3; accoilh = 20e-3;

xspacer = 0Oe—3;

accoilradin = crwin+crwleg+xspacer; accoilradout = accoilradin+accoilw;

accoil_right
accoil =
%....DC coil ..

rect2 (accoilradin ,accoilradout,—accoilh/2,accoilh/2);
accoil_right+move(accoil_right ,—2xaccoilradin —accoilw ,0);

dccoilh = 10e—3; dccoilw = crwin/2;

dccoilradin = (crhout—crhin)/2; dccoilradout = dccoilradin + dccoilh;
dccoilyc = crhin+(crhout—crhin)/2;

dccoil_top = rect2(—dccoilw/2,dccoilw/2,dccoilradin ,dccoilradout);
dccoil = dccoil_top + move(dccoil_top ,0,—2xdccoilradin—dccoilh);
dccoil = move(dccoil ,0,dccoilyc);

%....Air ....

xmax = 400e—3; ymax = 400e—3;

air = rect2(—xmax, Xmax, —ymax, ymax);

% Analyzed geometry

clear ¢ s

c.objs={fluxlinel , fluxline2 };
c.name={ fluxlinel ’,  fluxline2’};

c.tags={"g5",’
s.objs={air , ac
s.name={"airl’

s.tags={"gl’,’

fem.draw=struc

g6’ };

coil ,dccoil ,core };

,7accoil’, dccoil ”, core’ };
g23’7g3”ag4,};

b

t(’c’,c,’s’,s);

fem . geom=geomcsg (fem);

%.. Plot geometry ..

if (0)
geomplot (fem
return

end

fem.const = {’

s
s
s
s
s
s
s
s
s
s
s

s

, edgelabels’,’on’)

om’ , 2xpix50,...
Vmax’ , 28 ,...

Rpre’, 4.0,...

Rpost’, 0.1,...

Tfault’, 45e —3,...
Tsmooth’ , le—3,...

lz’, 50e —3,...
flecrwleg ’, crwleg , ...
crcross ’, “lz«flcrwleg’ ...
flacNt’, acNt , ...

accross ’, accoilwx*accoilh , ...
fllac’, Tac ,...

fldcNt’, deNt , ...
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79 “flldc’, Idc , ...

80 >dccross 7, dccoilwx*dccoilh , ...
81 >linmurfe >1000° , ...

82 "bha’, "2.12e—4" ...

83 "bhb >7.3587 ...

84 >bhe >1.18e67 , ...

85 Cl7, >.257 ...

86 C27, 7067 };

87

88 % Functions

89 clear fcns

>

90 fcns {1}.type="inline ;
91 fcns {1}.name="rational (x,bha,bhb,bhc)’;

92 fens {1}.expr="1/(bha.+.(1—bha)xx"bhb/(x"bhb+bhc)) " ;

93 fens {1}.dexpr={"diff (1/(bha+(l1—bha)*xx"bhb/._(x"bhb+bhc)),x)’ ,...
94 ’0°,70°,°0 };

95 fcns {2}.type="inline ’;

96 fcns {2}.name="hyperchord (x,C1,C2)";

97 fens {2}.expr="C2xx/(4* pixle—Txsinh (x/C1)) " ;

98 fens {2}.dexpr={"diff (C2xx/(4x pixle—T*sinh (x/Cl)),x)’,’0’,’0" };
99 fcns {3}.type="interp’;

100 fcns {3}.name="bmurtabular’;

101 fcns {3}.method="1linear’;

102 fcns {3}.extmethod="const’;

103 fens {3}.filename="/mnt/dutital /nw/domenico/software/bh_curve/mur_normb_data.txt’;
104 fem. functions = fcns;

105

106 % Global expressions

107 fem. globalexpr = {’Vline’, ’Vmax#sin (omxt)’ ...

108 ’Vindl "’ , >flacNtxlz/accross*xEintl > ,...

109 ’Vind2’ , >flacNtxlz/accross*xEint2’ ,...

110 ’Vind’, ’Vind1+Vind2”’ ...

111 "Bavrgl’, "Bintl /flcrwleg’ ,...

112 "Bavrg2’, "Bint2/flcrwleg’ ,...

113 >fluxtl ’, >flacNt*1z+xBtintl "’ ,...

114 “fluxt2 "flacNtxlzxBtint2’ ,...

115 >Rline ’, "Rpre .—.(Rpre—Rpost)* flc2hs (t—Tfault , Tsmooth) ’ };
116

117 % Initialize mesh

118 fem . mesh=meshinit (fem);

119 %% fem.mesh = meshrefine (fem);
120 %% fem.mesh = meshrefine (fem);

121

122 if (0)

123 meshplot (fem)
124 return

125 end

126

W It el el el el el dledldledledledledledledledledldledldledldledledledldledledledledledledledledle el el el
128

129 % Application mode 0: nominal current computation
130 if (0)

131 clear appl

132 appl.mode. class = "PerpendicularCurrents’;

133 appl.module = ACDC’;

134 clear bnd

135 bnd.type = { A0’, cont’};

136 bnd.ind = {[1,2,3,38],[4:37,39:41]};
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137 appl.bnd = bnd;

138 clear equ

139 equ.init = {’le—6xsqrt(x"2+y~2)’,0,0,0,0,0};
140 if (strcmp (bhswtch,’linear’)==1)

141 equ.mur = {’linmurfe’ ,1,1,1,1,1};

142 elseif (strecmp(bhswtch, rational ’)==1)

143 equ.mur = {’rational (normB,bha,2%bhb,bhc)’ ,1,1,1,1,1};
144 elseif (stremp(bhswtch,’ hyperchord’)==1)

145 equ.mur = { hyperchord (normB,C1,C2)" ,1,1,1,1,1};
146 elseif (strcmp(bhswtch,’tabular’)==1)

147 equ.mur = {’bmurtabular(normB)’ ,1,1,1,1,1};
148 else

149 error(’__error ::undefined _.BH_.switch’)

150 end

151 equ.Jez = {0, —flacNt«fllac/accross’, flacNt«fllac/accross’,0,0,0};
152 equ.ind = {[3,4].2,8.,6,7,[1,5]};

153 appl.equ = equ;

154 fem.appl{1} = appl;

155 fem.frame = {’ref’};

156 fem.border = 1;

157 clear units;

158 units . basesystem = ’SI’;

159 fem.units = units;

160

161 % ODE Settings

162 clear ode

163 ode.dim={"Itot’ };

164 ode.f={"0"};

165 ode.init={"0"};

166 ode.dinit={"0"};

167 fem . ode=ode;

168

169 % Multiphysics

170 fem=multiphysics (fem);

171

172 % Extend mesh

173 fem .xmesh=meshextend (fem);

174

175 % Solve problem

176 fem.sol=femstatic (fem,

177 *solcomp’ ,{ Az’ }, ...

178 “outcomp’ ,{ Az’ });

179

180 Rpre = 4; Rpost = .1; om = 2xpi*50; Vmax = 28; lz = 25e—-3;

181 Wmtot = lzxpostint (fem,’.5%xBxxHx+.5%xByxHy’, Edim’ ,2,’D1’ ,[1:8]);
182 L = 2xWmtot /lac"2;

183 Xpre = sqrt(Rpre”2 + om™2xL"2); Ipre = Vmax/Xpre;

184 Xpost = sqrt(Rpost™2 + om™2xL"2); Ipost = Vmax/Xpost;

185 fprintf(’__The_inductance._of_the._coil_._..=.%f_H._.\n’, L)

186 fprintf(’__Nominal_current._before._fault_=_%f_Amp._\n’, Ipre)
187 fprintf(’_._.Nominal_current.after..fault_=_.%f_Amp._\n’, Ipost)
188

189 return

190

191 end %.. Nominal current computation

192

\ Rl ddlededededdlede el dldledededededlededledlededlededlededldledledlededledlededlededldledl el et eddledededlededleds
194
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195 % Application mode 1: generating initial guess for the DC coil flux
196 if (1)

197 clear appl

198 appl.mode. class = ’PerpendicularCurrents’;
199 appl.module = "ACDC’;

200 clear bnd

201 bnd.type = { A0’ ,’ cont’ };

202 bnd.ind = {[1,2,3,38],[4:37,39:41]};
203 appl.bnd = bnd;

204 clear equ

205 equ.mur = {’ 100" ,1,1,1,1,1};

206 equ.Jez = {0,0,0,  fldcNtxflldc/dccross’ ,...
207 "—fldeNt«flIdc /dccross’ ,0};
208 equ.ind = {[3,4],2,8,6,7,[1,51};

209 appl.equ = equ;

210 fem.appl{l} = appl;

211 fem.frame = {’ref’};

212 fem.border = 1;

213 clear units;

214 units .basesystem = ’SI’;

215 fem.units = units;

216

217 % ODE Settings

218 clear ode

219 ode.dim={"Ttot’ };

220 ode.f={"0"1};

221 ode.init={"0"};

222 ode.dinit={"0"};

223 fem.ode=ode;

224

225 % Multiphysics

226 fem=multiphysics (fem);

227

228 % Extend mesh

229 fem.xmesh=meshextend (fem);

230

231 % Solve problem

232 fprintf(’__Generating.initial_guess_for_.the_.DC.coil_flux....\n")
233 fem.sol=femstatic (fem,

234 *solcomp’ ,{ Az’ }, ...
235 “outcomp’ ,{ Az’ , Itot’});
236 fprintf(’__... ~done!.\n")

237

238 fem0 = fem;

239

240

241 end %.. Parametric solver in DC winding
242

WG/ el el el el dledle el el el dledle el edleedledle el edledle edleedledlesledledle el el edledledle el el el el el el el ledle
244

245 % Application mode 2: generating initial guess for the AC coil flux

246 if (1)

247 clear appl

248 appl.mode. class = "PerpendicularCurrents’;
249 appl.module = ACDC’;

250 clear bnd

251 bnd.type = { A0’, cont’};

252 bnd.ind = {[1,2,3,38],[4:37,39:41]};
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253 appl.bnd = bnd;

254 clear equ

255 if (stremp (bhswtch,’linear’)==1)

256 equ.mur = {’linmurfe’,1,1,1,1,1};

257 elseif (strcmp(bhswtch,’rational’)==1)

258 equ.mur = {’rational (normB,bha,2+bhb,bhc)’,1,1,1,1,1};
259 elseif (stremp(bhswtch,’ hyperchord’)==1)

260 equ.mur = { hyperchord (normB,C1,C2)" ,1,1,1,1,1};
261 elseif (strecmp(bhswtch,’ tabular’)==1)

262 equ.mur = {’bmurtabular(normB)’,1,1,1,1,1};

263 else

264 error(’__error ::undefined .BH_switch’)

265 end

266 equ.Jez = {0,0,0,  fldcNt«flldc/dccross’ ,...

267 "—fldeNt«flIdc/dccross’ ,0};

268 equ.ind = {[3,4].2,8.,6,7,[1,5]};

269 appl.equ = equ;

270 fem.appl{1} = appl;

271 fem.frame = {’ref’};

272 fem.border = 1;

273 clear units;

274 units . basesystem = ’SI’;

275 fem.units = units;

276

277 % ODE Settings

278 clear ode

279 ode.dim={"Itot’ };

280 ode.f={"0"};

281 ode.init={"0"};

282 ode.dinit={"0"};

283 fem . ode=ode;

284

285 %% Multiphysics

286 fem=multiphysics (fem);

287

288 % Extend mesh

289 fem.xmesh=meshextend (fem);

290

291 % Solve problem

292 fprintf(’_._Generating.initial .guess_for_.the.DC.coil.flux....\n")
293 fem.sol=femstatic (fem,

294 init’, femO.sol,...
295 >solcomp’ ,{ Az’ }, .
296 “outcomp’ ,{ Az’ ,’ Itot’},
297 >Pname’ ,’ flldc’ ,...
298 "Plist’ ,[Idc],...

299 >Maxiter’ ,40,...

300 >Ntol’ ,1e —8);

301 fprintf(’__... ~done!._\n")

302

303 fem0 = fem;

304

305 end %.. Generatring initial guess for the AC flux
306

RV 7o ool el el el el el edledledledle edledledledle edledle el el el el el edledle el ledledle el el el el
308

309 % Application mode 3: transient simulation

310 % Saturation current in the DC winding
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% ODE solution in the AC winding

clear appl
appl.mode.class = ’PerpendicularCurrents’
appl.module = "ACDC’;
clear prop
prop.analysis=’transient’
appl.prop = prop;
clear bnd
bnd.type = { A0’ , ’cont’};
bnd.ind = {[1,2,3,38],[4:37.,39:41]};
appl.bnd = bnd;
clear equ
equ.init = {’le—6xsqrt(x"2+y"2)’,0,0,0,0,0};
if (strcmp(bhswtch,’linear’)==1)
equ.mur = {’linmurfe’ ,1,1,1,1,1};
elseif (strcmp(bhswtch,’rational’)==1)
equ.mur = {’rational (normB,bha,2xbhb,bhc)’,1,1,1,1,1};
elseif (strecmp(bhswtch, hyperchord’)==1)
equ.mur = { hyperchord(normB,C1,C2)’ ,1,1,1,1,1};
elseif (strcmp(bhswtch,’tabular’)==1)
equ.mur = {’bmurtabular(normB)’ ,1,1,1,1,1};

else
error (’__error ::undefined _.BH_switch’)
end
equ.Jez = {0, flacNtxItot/accross’,’—flacNtxItot/accross’ ,...

"fldcNt«flldc/dccross’,’—fldeNt«flldc /dccross’ ,0};
equ.ind = {[3,4].,2,8,6,7,[1,5]};
appl.equ = equ;
fem.appl{l1} = appl;
fem.frame = {’ref’};
fem.border = 1;
clear units;
units . basesystem = ’SI’;
fem.units = units;

% Coupling variable elements
clear elemcpl

% Integration coupling variables
clear elem

elem.elem = ’elcplscalar’
elem.g = {"1’};

src = cell(1,1);

clear bnd

bnd.expr = {{{}.{}," By’ . {}.{}. {3} {{}.{}. {3 {3, "By . {3 ). {{} .{}, "—Azxt" .{},
{},{}}»{{}’{}»{},{},'—AZXt A3

bnd.ipoints = {{{},"4", 74", {}. {3, {3 {{}.{}.{}. 747,747 {3} . {{}. 747747 {} . {},
A0 30404 000D

bnd.frame = {{{}, ref’, ref’  {}.{}, ref’ } {{}, {} {}, ref’,’ref’, ref’” },{{},
“ref’,ref’ {} %, ref’} {{}, ref’ ,{}, ref’, ref’,"ref’} ,{}.{}};

A

bnd.ind = {{°1°,72,’3",°4>,°5",°7°,°87,°9" 11" ,°12°,713",°14" ;" 15",
’16’,’17’,’18’,’19’,’20’,’21’,’22’,’23’,’24’,’25’,’26’,’27’,’28’,’31’, ..
327,733,734 ,°357,°36°,°37°,°387,739°,°40° },{’6° },{’10° },{°29°}.,{’30" },
{41°,742° )

clear equ

equ.expr = {{} {}.{}.{}.{{}, —E2" . {} .{}}.{{}.{}.{}," B2’ } };
equ.ipoints = {{},{}.{}.{}.{{}.74". 74" . {3} .{{}.{}.{}. 4"} };
equ.frame = {{},{}.{}.{}.{{}, ref’, ref’,’ref’},{{}.{}, ref’, ref’}};
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369 equ.ind = {{’1°,’3”,°4°,°5> .76}, {2 },{’7°},{’8  }};
370 src{1} = {{}.bnd,equ};
371 elem.src = src;

372 geomdim = cell (1,1);

373 geomdim{1} = {};

374 elem.geomdim = geomdim;

375 elem.var = {’Bintl’,’Bint2’,’ Btintl’,’Btint2’, Eintl’,  Eint2 "’ };
376 elem.global = {"1°,°2°,°3" 74" °5° °6" };

377 elem.maxvars = {};

378 elemcpl{l} = elem;

379 fem.elemcpl = elemcpl;

380

381 % ODE Settings

382 clear ode

383 ode.dim={"TItot’ };

384 ode.f={"RlinexItot+Vind—Vline "’ };

385 ode.init={"0"};

386 ode.dinit={"0"};

387 fem . ode=ode;

388

389 % Multiphysics

390 fem=multiphysics (fem);

391

392 % Extend mesh

393 fem.xmesh=meshextend (fem);

394

395 % Solve problem

396 fem. sol=femtime (fem,

397 >init’, femO.sol ,...
398 >solcomp’ ,{ Az’ ,’  Itot’},
399 >outcomp’ ,{ Az’ ,’  Itot’},
400 atol’,1le—6,...

401 rtol’,1le—6,...

402 >tlist” ,[0:0.001:0.087,
403 “tout’,’tlist’ ...

404 ’nlsolver’,’manual’,
405 "ntolfact’,0.01,

406 ‘maxiter’ ,25,

407 >dtech’,’const’,

408 “damp’ ,1.0,

409 >jtech’ ,’minimal’ ,...
410 >linsolver’,’pardiso’,
411 errorchk’,’ off’);

412

413 % Plot current

414 postglobalplot(fem, Itot’)

415 postglobalplot(fem,{ Bavrgl’, Bavrg2’})

416 postglobalplot (fem,{’ Vindl+Vind2’,’ fluxtl+fluxt2’})
417 postglobalplot(fem, Itot’)
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Chapter 7

Three Dimensional FE Models of Inductive
Fault Current Limiters

To do
e search for last implementation of open core and three legs model

e add references to De Gersem and Dular on the field circuit coupling

7.1 Open-Core Configuration

7.1.1 Geometry

In defining the geometry, the core acts as master, while the DC and AC coil act as slave. The geometry will consist of
the following four parts:

1. the core: build by extruding a working plane in the yz-plane in the z-direction. There will be a relation between
the depth and width of the core leg.

(a) core variables

crlegw = ;

crwin = ; crwout = crwin + crlegw;
crhout = ; crhin = ;

crd = ;

(b) core working plane:

core_plane = fillet (rect2 (-crwout, crwout, -crhout, crhout), ’'rad’, rad)
- fillet (rect2 (crwin,crwin, -crhin, crhin), ’'rad’, rad);

(c) core extrusion

set working plane at x = 0
core = extrude (core_plane, ’'distance’, 2xcrd);

2. flux integration surfaces:
3. the generic coil: build by extruding a working plane in the xy-plane in the z-direction

(a) generic coil variables

coilw = ; coilh = ;
yspacer = ; zspacer = ;
coilradin = crlegw/2+yspacer; coilradout = coilradin+coilw;

coilyc = crwin+crwleg/2; coilzc= coilh/2 + zspacer;
(b) coil working plane:

coil_plane = circ2(coilradout) - circ2(coilradin);
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(c) coil extrusion

set working plane at z = 0
coil = extrude(coil_plane, ’'distance’, coilh)

4. the DC coil: by moving the generic coil in positive y-direction and in positive z-direction
(a) DC coil variable
dccoilzc= coilh/2 + zspacer;
(b) dccoil = move(coil,0,coilyc,dccoilzc);
5. the AC coil: by moving the generic coil in positive y-direction and in negative z-direction
(a) AC coil variable

accoilzc= -coilh/2 - zspacer;

(b) accoil move (coil, 0,coilyc,accoilzc);

6. the air: build using the block3 command

For the ease of modification of this geometry we will work with a full model.

7.1.2 Meshing

Currently the meshing happens fully automatically, excepts for the option hauto used in meshinit. Due to this
automation, difficulties may occur in case the space between the coils and the core leg is to small. This issue will have
to be dealt with in the future.

7.1.3 Constants, Functions and Subdomain and Global Expressions
Constants

Note that a fill-factor in the coils in not used

| Electrical constants | \
’ w \ 2750 ‘
y DC coil \ \
Number of turns

Cross-section
Current value

AC coil
Number of turns
Cross-section
BH curve data

a 2.12e-4
b 7.358
c 1.18e6
Cq 25
Co .06

Table 7.1: Constants Used
Functions

Here we define the BH curves and the winding functions.

Subdomain expressions

Here we define the densities for the induced voltage
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Global expressions

Here we define the electrical excitation and the induced voltage.

7.1.4 Application modes

We solve for both the vector and scalar potential. The scalar potential is used to avoid that during time integration
components in the null space of the curl-curl operator are introduced.

7.1.5 Integration coupling variables

Here we integrate the induced voltage density to obtain the total induced voltage.

7.1.6 Definition of the ODE

The sum of resistive and induced voltage is at all times equal to the total applied voltage.
7.1.7 Solution process

7.1.8 Post processing

7.2 Different solution modes

7.2.1 Linear core

7.2.2 Non-linear core

Define the different stages.
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Chapter 8
Size Optimization

1. zeroth order model by Dalibor: number of winding determines the Ohmic losses. These losses should not exceed
an a-priori established limit. This is guaranteed by imposing the number of turns. From this number of turns
and from the value of the applied voltage, normB and by using the analyical expressions for the impedance and
the induced voltage, an estimate of the leg cross-section, and thus the leg width can be establised.

2. formulation of the sizing optimization (later extend to topology optimization) problem
(in the order in which we intend to solve the problem):

(a) minimize mass subject to sufficient current limiting capabilities. This limiting capability can be set equal
to the one of the initial configuration.

(b) maximize current limiting capabilities subject to a constraint on the mass (same remark as in previous
case)

(c) multi-objective optimization problem with mass and limiting capability as conflicting objectives: compute
the Pareto-front (can be done easily using an analytical model)

3. design variables and box constraints: we first consider the sizes of the core as design variables. In the design,
the vertical and horizontal core leg width should remain equal. We therefore have four design variables: the
half inner window width and height (cr-w_in and cr_h_in), the depth (cr_d) and core leg width (cr_leg_w). The
lower bounds on the first two variables should be such to leave sufficient space for the dc coil. In a first analysis
the size of the inner window and the core depth can be taken to constant. In a second analysis we can allow the
height of the inner window to change. We observe that changing the width of the window implies more material
for the AC coil. The same is not true for changes in the height.

Experiments by Dalibor indicate that for the current limiting capability is most sensitive to the cross-section of
the core legs and the number of turns in the ac coil.

In a later stage we will add dimensions of the ac and dc coil as design variables and number of turns of the coil
(mixed integer problem).

4. computation of the objectives: for the computation of the mass we use

perd[2(er_h_in + cerlegw) - 2(crow-in + cr_legw) — 2er_h_in - 2cr_w_in)] (8.1)

core-mass

= perdlderlegw - (crohzin+ er_hin + crleg w)l; (8.2)

for the computation of the current limiting capability or induced voltage V;,4 we will for time being consider
a time-harmonic computation (% — jw) of the post-fault situation. Doing so we do not take the peak current
into account. We have that R

I = Re[l exp(jwt)], (8.3)

and solve for 1. We consider the following three models of increasing complexity:

(a) analytical model. One of the difficulties in the analytical model is the correct estimation of the flux path.
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We have that

d
‘/1'71, = —(LI 8.4
na = (L) 64
. s Ac
= JwprpoNge— 1 (8.6)

aCl

5 crlegw-cr.d

= 27 furpoNZ, l I, 8.7)

where [ denotes the length of the flux path. This means that the induced voltage lags the current by /2
and its amplitude is function of the design variables. In a classical ac core layout, one could put

I =2(er_h_in+ cr_w_in + cr w_leg) (8.8)
For the open-core a more appropriate expression for the flux path could be
l=C-cr_hin (8.9)

where C' > 1 is a constant to be determined.
(b) 2D and 3D time-harmonic FEM model. In this model we have

d
Vind = Noo / B,dQ = jwNo. / Byd = Vinat — Vinas (8.10)
dt Js,. Ser 7 /
where N g N g
de,i =2 / E.dQ) = jw ac”z / A,dQ. (8.11)
SCU Set,i clii JSq

5. initial configuration and objective values:

parameter notation | value | units
mass density core p 7850 | kg/m3
number of AC turns Nae 100 -

Table 8.1: parameter values

crow_in | xxx [mm] || core-mass | xxx [kg]
cr.hiin | xxx [mm)] Vind xxx [V]
crleg w | xxx [mm]

crd XXX [mm]

Table 8.2: Initial configuration and objective values.

6. coarse model (analytical) design problem and solution techniques: in case we set out to minimize the mass, we
obtain:
find z* € X such that:

x* = argmin_ ycore-mass(x)  suchthat  Vj,q(x) > Vipao (8.12)

By incorporating the constraint on the induced voltage in the definition of the design space space, we can
formulate this as
find z* € X such that:

x" = argmin__~-core-mass(x) (8.13)

We intend to solve this problem using the Nelder-Mead simplex method and a gradient based optimization
algorithm with exact gradients with multiple starting points. Can the latter be done in Maple?
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. Pareto front: generate the coarse model Pareto front using a brute force approach (4-fold loop in the design
space).

. space mapping optimization: identity mapping on the mass, constraint mapping on the induced voltage.

. work in stages: Pareto front for analytical model (Dalibor?), build 2D time-harmonic FEM (Domenico), Pareto
front for 2D FEM model, build space-mapping function via a least-squares procedure, Pareto front for mapped
coarse model and comparison with FEM model, extend to 3D FEM, extend from time-harmonic to transient.
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