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Chapter 1

Introduction

In these notes we develop a sequence of numerical models of increasing accuracy and complexity for the current in
coils winded around ferromagnetic cores. Initially we were motivated by comparing different configurations of so-
called inductive fault current limiters. The study of these devices was presented at the Comsol Multiphysics Users
Conference 2008 in Hannover (+ reference). The configurations we study are however representative for a wide range
of other applications in AC/DC modelling such as electrical machines, transformers and actuators. We therefore
decided to document the solution to different difficulties we encountered in the modelling in Comsol Multiphysics,
hoping that you (the reader) might learn from it.

1.1 Inductive Fault Current Limiters
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Chapter 2

Inductance and Induced Voltage

In this section we review some preliminaries used in subsequent chapters.

Goals In this chapter we aim at

• computing the induced voltage, i.e., the time variation of the magnetic flux through a multi-turn coil wounded
around the leg of a ferromagnetic core, excited by a sinusoidal current able to bring the core leg periodically in
and out of saturation;

• relating this induced voltage with the time-variation of the impedance of the coil on one hand and the magnetic
permeability of the core leg on the other;

• presenting a field-circuit coupled model allowing to compute the induced voltage for arbitrary coil-core config-
urations.

2.1 Inductance
Consider a multi-turn coil wounded around a leg of a non-linear ferromagnetic core as shown in Figure xxx. A sinu-
soidal current will induce a time-varying magnetic field and induced voltage in the core. If the amplitude of the current
is sufficiently large, the working point of the core will move along the non-linear magnetic material characteristic and
bring the core leg alternatively in and out of saturation. This implies that the magnetic permeability will periodi-
cally vary between high to low values, corresponding to desaturation and saturation state, respectively. As the coil
impedance is proportional to the permeability, the former will vary accordingly. In this section we aim at quantifying
this change in coil impedance using the magnetic energy and induced voltage.

2.1.1 Definition
• give definition of (self and mutual) inductance

• give units (Henry) and function of primary units

1H = 1Wb/A = 1T m2/A = 1
V s
m2

m2/A = 1
V
A

s = 1Ω s (2.1)

• give range of value for applications (tens of miliHenry)

2.1.2 Model of a Solenoid

2.1.3 Magnetic Energy
Consider that the volume Ω encloses the core and ferromagnetic core and has a permeability µ = µ(x, t). The
magnetic energy Wm in Ω due to the magnetic flux B and field H induced due a time-varying current is given by the
volume integral

Wm(t) =
1
2

∫
Ω

B ·H dΩ =
1
2

∫
Ω

µB ·B dΩ . (2.2)
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In a 2D perpendicular current formulation on a computational domain with cross-section Ωxy in the xy-plane and
length `z in the z-direction (examples will be given in subsequent chapters), this formula simplifies to the surface
integral

Wm(t) =
`z
2

∫
Ωxy

[
BxHx +ByHy

]
dΩ =

`z
2

∫
Ωxy

µ
[
BxBx +ByBy

]
dΩ . (2.3)

In case that the magnetic field is generated by a total current Itot(t) flowing through a coil with Nt windings and
current I(t) per turn, i.e., Itot(t) = Nt I(t), the magnetic energy and the coil impedance L(t) are related by

Wm(t) =
1
2
L(t)I2(t)⇔ L(t) = 2

Wm(t)
I2(t)

. (2.4)

Assuming that I(t) 6= 0, this relation allows to compute a time-variable coil impedance via the magnetic energy. This
expression implies in particular that for linear magnetic constitutive relations or for current excitations that change the
permeability only to a limited amount, the impedance is constant (as in this case both the numerator and denomenator
scale quadratically with I). More general we have that the impedance

• scales quadratically with Nt;

• in case of linear magnetic constitutive laws, scales linearly with µ.

2.1.4 Magnetic Flux
The magnetic flux ψ(t) passing through an oriented surface S with outward normal n is given by the surface integral

ψ(t) =
∫

S

B · dS =
∫

S

B · n dS . (2.5)

In applications of this expression we are typically interested in, the surface S typically denotes the cross-section of the
ferromagnetic core perpendicular to the flux path. In a 2D perpendicular current formulation on the domain Ωxy , the
surface S is then a line piece perpendicular to the y-axis extending from x = xm to x = xM , extruded by a length `z
in the z-direction. Using the vector potential A (B = ∇×A ) as unknown, the above expression reduces to

ψ(t) =
∫

Score

B · n dS (2.6)

=
∫

Score

By dx dz (2.7)

= −
∫ xM

xm

dx

∫ zM

zm

dz
∂Az

∂x
[By = −∂Az

∂x
] (2.8)

= −`z
∫ xM

xm

dx
∂Az

∂x
(2.9)

= −`z [Az(x = xM , t)−Az(x = xm, t)] (2.10)
= `z [Az(x = xm, t)−Az(x = xM , t)] . (2.11)

Considering the coil to be an interconnection of Nt flux contributions, the magnetic flux and the coil impedance are
related by

Nt ψ(t) = L(t) I(t)⇔ L(t) =
Nt ψ(t)
I(t)

. (2.12)

Assuming that I(t) 6= 0, this expression allow to compute the impedance via the magnetic flux.

2.2 Impedance
The Ohmic resistance of the wire and the inductance of a coil can be combined to form the total impedance denoted
by X and defined by

X =
√
R2 + ω2L2 . (2.13)
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2.3 Induced Voltage
The voltage induced the time-varrying magnetic flux is given by

Vind = −Nt
dψ

dt
, (2.14)

where the minus sign is due to Lenz’s Law. Using the flux-impedance relation (??) the above relation can be written
as

Vind = − d

dt
(LI) . (2.15)

In case that dL
dt = 0, this formula reduces to

Vind = −L d

dt
(I) . (2.16)

meaning that the induced voltage is large (small) when the core leg is out (in) of saturation. In models where leakage
or fringing flux appears, it is not a-priori clear how to choose the integration surface S leading to a correct expression
for the induced voltage. This issue is resolved in the next section by integration the induced voltage density over the
cross-section of the conductor instead.

2.4 Stranded Conductor
In this section we develop a model allowing to compute the induced voltage by integrating the density over the cross-
section of the conductor. We need to describe the 3D model from which the 2D can be derived and observe that the
coil fill factor drops out in the description of the induced voltage.

2.4.1 Series Connection of Two Stranded Conductors
The induced voltage in the AC coil (with cross-section Sac,1 and Sac,2 on both siddes of the core) has two contributions
and can be computed as follows

Vind = Vind,1 + Vind,2 (2.17)

=
Nt,ac `z
Sac,1

∫
Sac,1

Ez dS −
Nt,ac `z
Sac,2

∫
Sac,2

Ez dS (2.18)

=
Nt,ac `z
Sac,1

∫
Sac,1

∂Az

∂t
dS − Nt,ac `z

Sac,2

∫
Sac,2

∂Az

∂t
dS (2.19)

where the minus sign stems from the fact that the current flows in opposite directions in both sides of the coil. An
alternative is to compute the induced voltage as

Vind = −Nt
dφtot

dt
(2.20)

= −Nt
d (φL + φR)

dt
if

dφair

dt
is small. (2.21)

d
dt (LI) = Nt `z

Scoil

∫
Scoil

Ez dS (2.22)

2.5 Magnetic Field - Electrical Circuit Coupled Model
Able to compute the current limiting effect, we develop a field-circuit coupled model.
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Chapter 3

Magnetic Saturation

In this section we describe the modeling of magnetic saturation in ferromagnetic materials, i.e., the modeling of the
non-linear constitute relation between the magnetic flux B (units T ) and the magnetic field H (units A/m). Using a
vector potential formulation and denoting by B = ‖B‖, H = ‖H‖, the magnetic material law typically considered is

H(B) = ν B = ν0 νr(B)B ⇔ ν(B) =
dH

dB
(B) , (3.1)

where ν0 and ν (νr) denote the reluctivity of vacuum and the material (relative reluctivity), respectively [see paper
Herbert on differential vs. chord reluctivity]. The inverse of the reluctivity is the permeability µ. Magnetic saturation
is such that µr(B) is large and almost constant for small values of B and small almost constant for large values of B
and has a non-linear transition between these two extreme values (see for instance Figure xxx).

In practise engineering practise, the function νr(B) is to be constructed from measured B-H samples. This
process makes the convergence of an FEM computation prone stagnation. We therefore consider analytical expressions
allowing to describe the function νr(B) analytically.

Goals In this chapter we aim at

• giving different analytical expressions for the non-linear B-H -curve modelling magnetic saturation

• give an example of a measured B-H

• illustrate a least square curve fitting technique allow to match the analytical expressions to the given measured
data

3.1 Analytical Models
To do:

• make all plots of the BH-curves again

• compute the second derivative of the analytical model to see where the curvature changes from positive to
negative.

• give a plot on double axis and deduce for which value of the current the core is in saturation.

3.1.1 Rational Function Approximation
In [?] the following rational expression modelling the relative reluctivity is given (denoting by B2 = ‖B‖2)

νr = a+
(1− a)(B2)b

(B2)b + c
⇔ µr =

1

a+ (1−a)(B2)b

(B2)b+c

(3.2)

where the values for the parameters a, b and c are given in Table ??. For this models holds that

νr(B2 = 0) = a (3.3)
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and thus the relative permeability at B2 = 0 is given by 1/a and that

lim
B2→∞

νr(B2) = 1 (3.4)

and thus the permeability never becomes smaller than µ0 (which is physically correct).

a 2.12e-4
b 7.358
c 1.18e6

Table 3.1: Constants Used in the Rational Approximation

(a) B-H-curve (b) µr-B curve

Figure 3.1: Rational Function Approximation of the B-H curve.

3.1.2 Hyperbolic Function Approximation
In [?] the following approximation is given:

B = C1 arcsinh(C2H)⇔ H =
1
C2

sinh(
B

C1
) (3.5)

where the values for the parameters C1 and C2 are given in Table (??). From this we obtain the chord permeability

µ =
B

H
=

C2B

sinh( B
C1

)
(3.6)

µr =
µ

µ0
=

C2B

µ0 sinh( B
C1

)
(3.7)

and the differential permeability

ν =
dH

dB
=

cosh(C2B)
C1C2

(3.8)

µ =
1
ν

=
C1C2

cosh(C2B)
(3.9)

µr =
µ

µ0
=

C1C2

µ0 cosh(C2B)
(3.10)

(3.11)

As in this model
lim

B2→∞
µr(B2) = 0 , (3.12)

is has to be used with due care.
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C1 .25 [T]
C2 .06 [m/A]

Table 3.2: Constants Used in the Sinh Approximation

(a) B-H-curve (b) µr-B curve

Figure 3.2: Hyperbolic Function Approximation of a B-H curve.

Remark This model requires a non-zero initial guess during intial guess to avoid the singularity at B = 0.

3.2 Measured Data
In this section we give the measured B-H-data we will use in our numerical examples in subsequent chapters.

3.2.1 Measured BH data
H = [0 310 315 320 330 350 380 410 430 ...
470 500 540 580 620 650 670 720 750 ...
770 820 900 1000 1100 1200 1400 1800 2300 ...
2800 3300 4300 5300 8300 10300 15300 20300 25300 ...
30300 40300 50300 70300 100300 200300 400300 600300 800300 ...
1000300];

B = [0 1.3449 1.3773 1.4003 1.4328 1.4736 1.5112 1.5367 1.5501 ...
1.5715 1.5845 1.5991 1.6114 1.6221 1.6293 1.6337 1.6439 1.6494 ...
1.6529 1.661 1.6724 1.6847 1.6954 1.7048 1.7209 1.7457 ...
1.7687 1.7866 1.8012 1.8242 1.842 1.8796 1.8975 1.9299 1.9529 ...
1.9708 1.9854 2.0084 2.0262 2.0532 2.0817 2.1371 2.1926 2.225 ...

2.248 2.2659 ];

3.3 Tuning the Analyical Models
In this section we performs a fitting of the parameters in the rational and hyperbolic approximation to the measured
data by a non-linear optimisation procedure.
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Chapter 4

Lumped Parameter Models of RL Circuits

Prior to detailing finite element models in subsequent chapters, we develop in this chapter simplified lumped parameter
approximation that serve to get an intuitive feeling and point of comparison for the subsequent models. The point of
departure for deriving lumped parameter models is the following first order ordinary differential equation relating the
voltage excitation V (t) with the current I(t) in a circuit with an Ohmic resistance R and coil impedance L

d

dt
(LI) +RI = V (t) . (4.1)

The terms in the left-hand side can be identified as the induced and resistive voltage, respectively, and the equation
states that at all times the sum of the induced and resistive voltage is equal to the externally applied one. The equation
needs to be supplied with an initial value for the current.

The Ohmic resistance R determined by the electrical conductivity of the medium. In the case that the coil is
solenoid wounded Nt times around a ferromagnetic core with magnetic permeability µ, the impedance L can be
expressed as

L = µN2
t

S

lpath
= µ0 µr N

2
t

S

lpath
, (4.2)

where S and lpath cross-section and length of the flux path in the ferromagnetic core respectively.
In this chapter we first derive an analytical expression for the current in an RL-circuit with constant impedance

and two excitations: a constant and sinusoidally varying voltage source. These models illustrate how the presence of
an impedance causes a phase shift in and amplitude reduction of the current. In more realistic models however the
magnetic permeability µ of the core changes by moving the operation point on a non-linear B-H characteristic. In a
second stage we therefore extend the model to include changes in the impedance induced by changes in the magnetic
permeability. This model assumes the coil to be a solenoid for which expression (??) is correct. The generalisation of
this model to more complex coil-core configurations is therefore not immediate.

Describe a mechanical equivalent: variable impedance and variable mass.

Goals In this chapter we aim at

• describing a simple model able to explain the inductive current limiting principle (including the concepts of
induced voltage and phase difference between applied voltage and current). This simple model can possibly
serve as coarse model inside an surrogate based optimisation algorithm.

• explaining why this simple model is not sufficient for the type of devices considered

To do:

1. insert sketch of RL circuit as in Comsol Users Conference

2. describe drop in resistive voltage

3. describe presence of DC coil by additive constant in the flux

4. insert code from ODE model

5. make plot of BH-curve using double axis
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4.1 Constant Impedance Model
In this section we assume that dL

dt = 0. In this case, equation (??) reduces to

L
dI

dt
+RI = V (t) . (4.3)

Given some initial condition, this ordinary differential equation can be solved numerically using a time-integrator
taking a time-dependent resistance (simulation of fault) into account. In order to derive analytical expressions however,
we assume from here on that dR

dt = 0. The ratio R
L has the dimensions of an (angular) pulsation. The solution of the

homogeneous equation to (??) is
Ih(t) = C exp(−R/L t) (4.4)

where C is chosen so to satisfy the initial conditions.

4.1.1 Constant Applied Voltage
In case that the applied voltage is constant and equal to V0, the method of variation of constants yields that I(t) =
C(t) Ih(t), where

C ′(t) = V0/L exp(ω1t)⇒ C(t) = V0/Lω1 exp(ω1t) + C0 = V0/R exp(ω1t) + C0 . (4.5)

For the current we then have

I(t) =
[
V0/R exp(ω1t) + C0

]
exp(−ω1t) (4.6)

= V0/R+ C0 exp(−ω1t) , (4.7)

where the integration constant C0 is related to the initial condition I(t = 0) = I0 by

C0 = I0 − V0/R . (4.8)

The current is then given by

I(t) = I0 exp(−ω1t) +
V0

R

[
1− exp(−ω1t)

]
. (4.9)

If the relaxation time τ = L/R is sufficiently small (i.e., if the resistance R is not too small and the inductance L is
not too large), then after a few multiples of the relaxation time, the current is independent of the initial condition and
equal to its stationary value

I(t) =
V0

R
. (4.10)

4.1.2 Sinusoidally Varrying Applied Voltage
In case that the applied is sinusoidally varying, i.e., V (t) = V0 sin(ω0t), the method of variation of constants yields
that I(t) = C(t) Ih(t), where

C ′(t) = V0/L sin(ω0t) exp(ω1t)⇒ C(t) = (V0/L)
∫ t

sin(ω0s) exp(ω1s) ds+ C0 . (4.11)

Applying integration by parts twice yields

L/V0 C(t) =
[
1/ω1 sin(ω0s) exp(ω1s)

]t − ω0/ω1

∫ t

cos(ω0t) exp(ω1s) ds+ C0 (4.12)

= sin (4.13)

where we have introduce ω1 = 1/τ = R/L. Hence

[1 + ω2
0/ω

2
1 ]C(t) = 1/ω1(V0/L) sin(ω0t) exp(ω1t)− ω0/ω

2
1V0 cos(ω0t) exp(ω1t) + C0 (4.14)
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or

C(t) = (V0/L)
[ ω1

ω2
0 + ω2

1

sin(ω0t)−
ω0

ω2
0 + ω2

1

cos(ω0t)
]

exp(ω1t) + C0 (4.15)

=
V0

L(ω2
0 + ω2

1)
[
ω1 sin(ω0t)− ω0 cos(ω0t)

]
exp(ω1t) + C0 (4.16)

=
V0

√
ω2

0 + ω2
1

L(ω2
0 + ω2

1)
[ ω1√

ω2
0 + ω2

1

sin(ω0t)−
ω0√

ω2
0 + ω2

1

cos(ω0t)
]

exp(ω1t) + C0 (4.17)

=
V0

L
√
ω2

0 + ω2
1

[
sin(ω0t) cos Θ− cos(ω0t) sin Θ

]
exp(ω1t) + C0 (4.18)

=
V0

L
√
ω2

0 + ω2
1

sin(ω0t−Θ) exp(ω1t) + C0 (4.19)

where we’ve introduced the phase shift

sin Θ
cos Θ

=
ω0

ω1
⇔ Θ = arctan(

ω0

ω1
) = arctan(

2π f R
L

) . (4.20)

The current is then given by

I(t) =
V0√

R2 + ω2
0L

2
sin(ω0t−Θ) + C0 exp(−ω1t) (4.21)

=
V0

X
sin(ω0t−Θ) + C0 exp(−ω1t) . (4.22)

If the relaxation time τ = 1/ω1 = L/R is suffuciently large (i.e., if the resistance R is not too small), then after a few
multiples of the relaxation time, the current is independent of the initial condition and equal to

I(t) =
V0√

R2 + ω2
0L

2
sin(ω0t−Θ) . (4.23)

Compared with a purely resistive network, the current has both a lower amplitude and a phase shift. A large impedance
in particular will lead to a lower current value and a larger phase shift.

4.2 Flux-Variable Impedance Model
The models developed in the previous section cease to be valid in situations in which the working point changes in
time over a range in which the permeability and therefore the impedance can no longer assumed to be constant. The
case that we will be interested in is the one in which the permeability varries along a non-linear B-H characteristic
and which time-varrying voltage source bringing the ferromagnetic core in (low permeability and impedance) and out
(high permeability and impedance) of saturation.

To extend our models to variable impedance cases, it turns out to be convenient to replace the current by the flux
as state variable

ψ = LI ⇔ I =
ψ

L(ψ)
(4.24)

and to rewrite the equation (??) modelling an RL-circuit as

d

dt
ψ +

R

L(ψ)
ψ = V (t) . (4.25)

In this model the variable impedance can be computed using the non-linear characteristic data assuming the model
(??) for a solenoid. In this case we have that

L(ψ) = µ
[
B(ψ)

]
N2

t

S

lpath
(4.26)

= µ
[ψ
S

]
N2

t

S

lpath
. (4.27)

Given an inital condition, the ODE (??) can be solved numerical for the flux ψ and thus also for current I using (??).
This model extends the models of the previous section to a variable impedance and thus allow to illustrate the

inductive fault current limiting effect. This model still has limited applicability as it uses the expression for the
solenoid.
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4.3 Numerical Example
In this section we employ the model developed in the previous section to illustrate how a coil with a flux-variable
impedance can work as a fault current limiter.

1 %% ODE s o l v e r f o r t h e RL c i r c u i t
2
3 c l o s e a l l
4
5 %. . S o l v e ODE f o r t h e m a g n e t i c f l u x . .
6 Tend = 5∗0 . 0 2 ;
7 o p t i o n s = o d e s e t ( ’ Re lTo l ’ ,1 e−12 , ’ AbsTol ’ ,1 e−12);
8 o p t i o n s = [ ] ;
9 [ T , p s i ] = ode45 ( @odefun , [ 0 Tend ] , 0 , o p t i o n s ) ;

10
11 %. . P l o t t h e f l u x . .
12 i f ( 1 )
13 p l o t ( T , p s i ) , x l a b e l ( ’ Time ’ ) , y l a b e l ( ’ F lux ’ )
14 end
15
16 %. . Pos t p r o c e s s and p l o t t h e c u r r e n t . .
17 Lvec = lookup imped ( p s i ) ;
18 I v e c = p s i . / Lvec ;
19 i f ( 1 )
20 f i g u r e
21 p l o t ( T , I v e c ) , x l a b e l ( ’ Time ’ ) , y l a b e l ( ’ C u r r e n t ’ )
22 end
23
24 %. . P l o t t h e impedance . .
25 i f ( 0 )
26 f i g u r e
27 p l o t ( T , Lvec ) , x l a b e l ( ’ Time ’ ) , y l a b e l ( ’ Impedance ’ )
28 end
29
30 %. . FCL d e v i c e d e f i n i t i o n . .
31 n t u r n s = 100 ;
32 l z = 50e−3;
33 c o i l w = 20e−3;
34 c o i l h = 50e−3;
35 S = c o i l w ∗ c o i l h ;
36
37 %. . Check i n t e r m e d i a t e r e s u l t s . .
38 bvec = p s i / ( n t u r n s ∗S ) ;
39 i f ( 0 )
40 f i g u r e
41 p l o t ( T , bvec ) , x l a b e l ( ’ Time ’ ) , y l a b e l ( ’ Average f l u x d e n s i t y ’ )
42 end

1 f u n c t i o n d p s i = odefun ( t , p s i )
2
3 R r e s t = 5 ;
4 i f ( t <0.02) R r e s t = 5 ; e l s e R r e s t = 1 ; end
5 Limpd = lookup imped ( p s i ) ;
6 Limpd = 4 .035 e−4;
7 d p s i = 20 ∗ s i n (2∗ pi ∗50∗ t )−R r e s t / Limpd∗ p s i ;

1 f u n c t i o n Limpd = lookup imped ( p s i ) ;
2
3 %. . FCL d e v i c e d e f i n i t i o n . .
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4 n t u r n s = 100 ;
5 l z = 50e−3;
6 c o i l w = 20e−3;
7 c o i l h = 50e−3;
8 S = c o i l w ∗ c o i l h ;
9

10 %. . Find b . .
11 b = p s i / ( n t u r n s ∗S ) ;
12
13 %. . Find p e r m e a b i l i t y . .
14 mu = bhcurve ( b ) ;
15
16 %. . Find i n d u c t a n c e . .
17 Limpd = n t u r n s ˆ2∗S∗mu / l z ;

1 f u n c t i o n mu = bhcurve ( b )
2
3 %. . BH c u r v e d e f i n i t i o n . .
4 bha = 2 . 1 2 e−4;
5 bhb = 7 . 3 5 8 ;
6 bhc = 1 . 1 8 e6 ;
7
8 mu0 = 4∗ pi ∗1e−7;
9

10 %. . D e f i n e mur−b2 c u r v e
11 b2 = b . ∗ b ;
12 nur = bha + (1−bha )∗ b2 . ˆ bhb . / ( b2 . ˆ bhb+bhc ) ;
13 mur = 1 . / nur ;
14 mu = mu0∗mur ;
15
16 %. . I f d e s i r e d , o v e r w r i t e w i t h l i n e a r m a t e r i a l . .
17 i f ( 1 )
18 mu = 1∗mu0∗ ones ( s i z e ( b ) ) ;
19 end
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Chapter 5

O-shaped core with DC and AC coil in 2D

5.1 TO DO
1. in the first model

• choice of surface S motivated by desire to minimize influence of fringing and leakage flux

• investigate influence influence of space between coil and core

• investige influence of gap in the core

• describe three stage process in solving the model

• include impedance computation after the second stage

• describe the setting of the initial guess in assembling the first jacobian (different from jacobian specified
in femsolver!)

2. additional model

• open core model

• three legs model

Goals

• simulate RL-circuit without having to resort analytical model for the impedance

• compute the impedance of a given configuration in three different ways, using the analytical formula, the mag-
netic energy and the magnetic flux

• compute the current waveform using only the AC coil, the DC coil in two different polarities and with linear
and non-linear core

• check the magnetic flux density in the core legs and verify using the BH-curve to what extend the DC coils
brings the legs in saturation

• investigate to what extend an ODE model allows to simulate this configuration, eventually by first computing
the impedance

• investigate to what extend the geometry of the coils affects the current waveforms

• document issues on time integration

5.2 2D Transient Field Circuit Coupled Model

5.2.1 Geometry
In defining the geometry the core acts master and the coil as slaves. This corresponds to the fact that the coils are
wounded around the core.

1. the core:
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(a) core variables

crwin = 12.5e-3; crwout = 37.5e-3; crwleg = crwout - crwin;
crhin = 39e-3; crhout = 63e-3;
rad = 3e-3;

(b) core:

core = fillet(rect2(-crwout,crwout,-crhout, crhout), ’radii’, rad) ...
- rect2(crwin,crwin,-crhin,crhin);

2. flux integration lines:

(a) left core leg: line from (-crwout,0) to (-crwin,0)

fluxline1 = line1([-crwout,-crwin],[0,0]);

(b) right core leg: line from (crwin,0) to (crwout,0)

fluxline2 = line1([crwin,crwout],[0,0]);;

3. the generic coil: build by extruding a working plane in the xy-plane in the z-direction

(a) generic coil variables

coilw = 10e-3; coilh = 20e-3;
xspacer = 2e-3; yspacer = 2e-3;
coilradin = crlegw/2+xspacer; coilradout = coilradin+coilw;
coilxc = crwin+crwleg/2;

(b) coil:

coil_right = rect2(coilradin,coilradout,-coilh/2,coilh/2);
coil = coil_right+move(coil_right,-2*coilradin-coilw,0);
coil = move(coil,-coilxc,0);

4. the DC coil: by moving the generic coil in positive y-direction

(a) DC coil variable

dccoilyc= coilh/2 + yspacer;

(b) dccoil = move(coil,0,dccoilyc);

5. the AC coil: by moving the generic coil in negative y-direction

(a) AC coil variables

accoilyc= -coilh/2 - yspacer;

(b) accoil = move(coil,0,accoilyc);

6. the air:

(a) air variables

airh = 400e-3; airw = 400e-3

(b) air = rect2(-airh, airh, -airw, airw);

The 1D and 2D entities in the geometry are then combined using

% Analyzed geometry
clear c s
c.objs={fluxline1,fluxline2};
c.name={’g1’,’g2’};
c.tags={’g1’,’g2’};

s.objs={core,dccoil,accoil,air};
s.name={’g3’,’g4’,’g5’,’g6’};
s.tags={’g3’,’g4’,’g5’,’g6’};

fem.draw=struct(’c’,c,’s’,s);
fem.geom=geomcsg(fem);
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5.2.2 Constants, Functions and Subdomain and Global Expressions
Constants

Note that a fill-factor in the coils in not used as the expression for the induced voltage in scaling invariant for the
induced voltage.

Electrical constants
ω 2 π 50

Vmax 28
Rpre 4.0
Rpost 0.1
Tfault 45e-3

Tsmooth 1e-3
DC coil

dcNt (Number of turns) 250
dccross (Cross-section) coilw*coilh

Idc (Current value) 10
AC coil

acNt (Number of turns) 200
accross (Cross-section) coilw*coilh

Core
lz (Length in z-direction) 25e-3

flcrwleg crwleg
crcross (Core leg cross-section) flcrwleg*lz

BH curve data
linmurfe 1000

bha 2.12e-4
bhb 7.358
bhc 1.18e6
C1 .25
C2 .06

Table 5.1: Constants Used

Functions Functions are used to define the different BH-curves.

Global expressions The flux variables and their derivatives are included to check the model. They are not used in
the computation as such. Flux variables are used to verify whether or not the core legs are in saturation. The flux
derivative variables are used to check the induced voltage.

V line = V max sin(ωt) (5.1)
Rline = Rpre− (Rpre−Rpost) ∗ flc2hs(t− Tfault, Tsmooth) (5.2)
V ind1 = acNt ∗ lz/accross ∗ Eint1 (5.3)
V ind2 = acNt ∗ lz/accross ∗ Eint2 (5.4)
Bavrg1 = Bint1/crwleg (5.5)
Bavrg2 = Bint2/crwleg (5.6)
fluxt1 = acNt ∗ lz ∗Btint1 (5.7)
fluxt2 = acNt ∗ lz ∗Btint2 (5.8)
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5.2.3 Integration Coupling Variables
We keep two variables for the induced voltage in order to be able to monitor them seperately. Subdomain integration
coupling variables for the induced voltage

Eint1 = sgn(Jz)
∫

accoil1

Ez dΩ =
∫

accoil1

∂Az

∂t
dΩ (5.9)

Eint2 = sgn(Jz)
∫

accoil2

Ez dΩ = −
∫

accoil2

∂Az

∂t
dΩ (5.10)

and boundary integration coupling variables for the average flux and the time-derivative of the flux

Bint1 =
∫

fluxline1

By dl =
∫

fluxline1

−∂Az

∂x
dl (5.11)

Bint2 = −
∫

fluxline2

By dl = −
∫

fluxline2

−∂Az

∂x
dl (5.12)

Btint1 =
∫

fluxline1

By dl =
∫

fluxline1

−∂
2Az

∂x ∂t
dl (5.13)

Btint2 = −
∫

fluxline2

By dl = −
∫

fluxline2

−∂
2Az

∂x ∂t
dl (5.14)

where the minus sign in the expressions with index two take the direction of the current into account.

5.2.4 Application mode, subdomain and boundary settings
The magnetic field is modeled by a partial differential equation for the z-component of the magnetic vector potential
Az (perpendicular current model) satisfying the following equation

σ
∂Az

∂t
+

∂

∂x

(
ν0 νr(B)

∂Az

∂x

)
+

∂

∂y

(
ν0 νr(B)

∂Az

∂y

)
= Jz(x, y, t) (5.15)

where σ = 0 everywhere on Ω, supplied with boundary conditions. All time-dependency is thus in the current source!
We do solve this equation with a time-stepping procedure as we need the derivative ∂Az

∂t in defining the induced
voltage.

• material characteristics:

– ferromagnetic core: µr through BH-curve

– coils and air: µr = 1

• current exitation

– DC coil: constant current density equal to Jz,dc = ± Idc,tot

Sdc
= ±dcNt Idc

dccross

– AC coil: voltage driven by a sinusoidal voltage source V line through the circuit relation given below. The
variable Itot is to be computed such that Jz,ac = ± Iac,tot

accross = ±acNt Itot
accross

Different Application Modes In different application modes we subsequently solve for

• the impedance using three different models

• the initial guess for the transient simulation

• the non-linear transient simulation including the fault

5.2.5 ODE Settings
The current in the AC coil is modeled by a crircuit relation (an ODE) for the variable Itot

Vtot = Vres + Vind (5.16)
= RItot + V ind1 + V ind2 (5.17)
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Chapter 6

O-shaped core with DC and AC coil in 3D

6.0.6 Geometry
In defining the geometry, the core acts as master, while the DC and AC coil act as slave. The geometry will consist of
the following four parts:

1. the core: build by extruding a working plane in the yz-plane in the x-direction. There will be a relation between
the depth and width of the core leg.

(a) core variables

crlegw = ;
crwin = ; crwout = crwin + crlegw;
crhout = ; crhin = ;
crd = ;

(b) core working plane:

core_plane = fillet(rect2(-crwout,crwout,-crhout, crhout), ’rad’, rad) ...
- fillet(rect2(crwin,crwin,-crhin,crhin), ’rad’, rad);

(c) core extrusion

set working plane at x = 0
core = extrude(core_plane, ’distance’, 2*crd);

2. flux integration surfaces:

3. the generic coil: build by extruding a working plane in the xy-plane in the z-direction

(a) generic coil variables

coilw = ; coilh = ;
yspacer = ; zspacer = ;
coilradin = crlegw/2+yspacer; coilradout = coilradin+coilw;
coilyc = crwin+crwleg/2; coilzc= coilh/2 + zspacer;

(b) coil working plane:

coil_plane = circ2(coilradout) - circ2(coilradin);

(c) coil extrusion

set working plane at z = 0
coil = extrude(coil_plane, ’distance’, coilh)

4. the DC coil: by moving the generic coil in positive y-direction and in positive z-direction

(a) DC coil variable

dccoilzc= coilh/2 + zspacer;

(b) dccoil = move(coil,0,coilyc,dccoilzc);

17



5. the AC coil: by moving the generic coil in positive y-direction and in negative z-direction

(a) AC coil variable

accoilzc= -coilh/2 - zspacer;

(b) accoil = move(coil,0,coilyc,accoilzc);

6. the air: build using the block3 command

For the ease of modification of this geometry we will work with a full model.

6.0.7 Meshing
Currently the meshing happens fully automatically, excepts for the option hauto used in meshinit. Due to this
automation, difficulties may occur in case the space between the coils and the core leg is to small. This issue will have
to be dealt with in the future.

6.0.8 Constants, Functions and Subdomain and Global Expressions
Constants

Note that a fill-factor in the coils in not used

Electrical constants
ω 2 π 50

DC coil
Number of turns

Cross-section
Current value

AC coil
Number of turns

Cross-section
BH curve data

a 2.12e-4
b 7.358
c 1.18e6

C1 .25
C2 .06

Table 6.1: Constants Used

Functions

Here we define the BH curves and the winding functions.

Subdomain expressions

Here we define the densities for the induced voltage

Global expressions

Here we define the electrical excitation and the induced voltage.

6.0.9 Application modes
We solve for both the vector and scalar potential. The
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6.0.10 Integration coupling variables
Here we integrate the induced voltage density to obtain the total induced voltage.

6.0.11 Definition of the ODE
The sum of resistive and induced voltage is at all times equal to the total applied voltage.

6.0.12 Solution process

6.0.13 Post processing

6.1 Different solution modes

6.1.1 Linear core

6.1.2 Non-linear core
Define the different stages.
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Chapter 7

Size Optimization

1. zeroth order model by Dalibor: number of winding determines the Ohmic losses. These losses should not exceed
an a-priori established limit. This is guaranteed by imposing the number of turns. From this number of turns
and from the value of the applied voltage, normB and by using the analyical expressions for the impedance and
the induced voltage, an estimate of the leg cross-section, and thus the leg width can be establised.

2. formulation of the sizing optimization (later extend to topology optimization) problem
(in the order in which we intend to solve the problem):

(a) minimize mass subject to sufficient current limiting capabilities. This limiting capability can be set equal
to the one of the initial configuration.

(b) maximize current limiting capabilities subject to a constraint on the mass (same remark as in previous
case)

(c) multi-objective optimization problem with mass and limiting capability as conflicting objectives: compute
the Pareto-front (can be done easily using an analytical model)

3. design variables and box constraints: we first consider the sizes of the core as design variables. In the design,
the vertical and horizontal core leg width should remain equal. We therefore have four design variables: the
half inner window width and height (cr w in and cr h in), the depth (cr d) and core leg width (cr leg w). The
lower bounds on the first two variables should be such to leave sufficient space for the dc coil. In a first analysis
the size of the inner window and the core depth can be taken to constant. In a second analysis we can allow the
height of the inner window to change. We observe that changing the width of the window implies more material
for the AC coil. The same is not true for changes in the height.
Experiments by Dalibor indicate that for the current limiting capability is most sensitive to the cross-section of
the core legs and the number of turns in the ac coil.
In a later stage we will add dimensions of the ac and dc coil as design variables and number of turns of the coil
(mixed integer problem).

4. computation of the objectives: for the computation of the mass we use

core-mass = ρ cr d [2(cr h in+ cr leg w) · 2(cr w in+ cr leg w)− 2cr h in · 2cr w in)] (7.1)
= ρ cr d [4cr leg w · (cr h in+ cr h in+ cr leg w)] ; (7.2)

for the computation of the current limiting capability or induced voltage Vind we will for time being consider
a time-harmonic computation ( d

dt → jω) of the post-fault situation. Doing so we do not take the peak current
into account. We have that

I = Re[Î exp(jωt)] , (7.3)

and solve for Î . We consider the following three models of increasing complexity:

(a) analytical model. One of the difficulties in the analytical model is the correct estimation of the flux path.
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We have that

Vind =
d

dt
(LI) (7.4)

= jωL I (7.5)

= jωµrµ0N
2
ac

Ac

l
I (7.6)

= 2π j fµrµ0N
2
ac

cr leg w · cr d
l

I , (7.7)

where l denotes the length of the flux path. This means that the induced voltage lags the current by π/2
and its amplitude is function of the design variables. In a classical ac core layout, one could put

l = 2(cr h in+ cr w in+ cr w leg) (7.8)

For the open-core a more appropriate expression for the flux path could be

l = C · cr h in (7.9)

where C > 1 is a constant to be determined.

(b) 2D and 3D time-harmonic FEM model. In this model we have

Vind = Nac
d

dt

∫
Scr

BydΩ = jωNac

∫
Scr

BydΩ = Vind,1 − Vind,2 , (7.10)

where
Vind,i =

Nac `z
Scl,i

∫
Scl,i

EzdΩ = jω
Nac `z
Scl,i

∫
Scl,i

AzdΩ . (7.11)

5. initial configuration and objective values:

parameter notation value units
mass density core ρ 7850 kg/m3

number of AC turns Nac 100 -

Table 7.1: parameter values

cr w in xxx [mm] core-mass xxx [kg]
cr h in xxx [mm] Vind xxx [V]

cr leg w xxx [mm]
cr d xxx [mm]

Table 7.2: Initial configuration and objective values.

6. coarse model (analytical) design problem and solution techniques: in case we set out to minimize the mass, we
obtain:
find x∗ ∈ X such that:

x∗ = argminx∈Xcore-mass(x) such that Vind(x) ≥ Vind,0 (7.12)

By incorporating the constraint on the induced voltage in the definition of the design space space, we can
formulate this as
find x∗ ∈ X such that:

x∗ = argminx∈Xcore-mass(x) (7.13)

We intend to solve this problem using the Nelder-Mead simplex method and a gradient based optimization
algorithm with exact gradients with multiple starting points. Can the latter be done in Maple?
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7. Pareto front: generate the coarse model Pareto front using a brute force approach (4-fold loop in the design
space).

8. space mapping optimization: identity mapping on the mass, constraint mapping on the induced voltage.

9. work in stages: Pareto front for analytical model (Dalibor?), build 2D time-harmonic FEM (Domenico), Pareto
front for 2D FEM model, build space-mapping function via a least-squares procedure, Pareto front for mapped
coarse model and comparison with FEM model, extend to 3D FEM, extend from time-harmonic to transient.
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