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ABSTRACT

In order to eliminate additional degrees of freedom in
the surrounding domain of a charged or polarized ob-
ject, we implement an open boundary method based on
a hybrid FEM-BEM approach which is tested for mag-
netostatic problems. The underlying functional depen-
dency of domain and boundary variables entails a spar-
sity decrease of the system matrix with an increasing
surface area to volume ratio. Such a case is commonly
at hand if systems with a high aspect ratio are consid-
ered. Therefore, we also propose an effective way which
allows for the treatment of such systems in a simpli-
fied two-dimensional form without neglecting the three-
dimensional characteristics of the external field. The
approach is tested for the cases of a three-dimensional
homogeneously magnetized sphere and a thin magnetic
sheet.

Keywords: magnetostatics, open boundary models,
boundary element method

1 INTRODUCTION

Recent trends in fore-front technological methods ven-
ture into a progressive miniaturization of functional de-
vices down to the micro- or even nanoscale [1], [2]. Com-
monly, these systems combine continuum mechanical
and electromagnetic aspects and are widely summarized
within the field of MEMS- or NEMS-technology (Micro-
/Nano-Electro-Mechanical-Systems). With strongly re-
duced dimensions, different effects become predominant
in comparison to the macroscale. In particular, strong
variations of physical properties may occur on even short
length and time scales. Therefore, an accurate evalua-
tion of all contributions involved proves crucial for the
design of novel devices. In this regard, finite element
methods provide a strong tool for the numerical analysis
of such systems. In comparison to, e.g., finite difference
techniques, the spatial discretization of the physical do-
main into triangular/tetrahedral subdomains allows for
a precise approximation of the model geometry.

However, one particular inherent characteristic about
Maxwell’s equations introduces complications when deal-
ing with the electromagnetic properties. While most

Figure 1: Influence of the choice of the domain cut-off
for (a) rectangular and (b) spherical exterior domain.
Depending on the choice of the exterior, strong devi-
ations from the exact solution may be present on the
magnetic object (gray block).

mechanical quantities are local, i.e., their values at a
specific space point can be obtained by the evaluation
of various material properties at the respective position,
magnetic fields exhibit a non-local nature. As an ex-
ample, we consider a magnetic block as shown in Fig-
ure 1(a) that is homogeneously magnetized with the
magnetization parallel to the negative x-axis. Of course,
we would expect its deformation under some sort of me-
chanical stress to be independent from the topology of
the surrounding space, only forces along the volume or
the surface are of importance. Similarly, in order to
estimate magnetic forces on the block, we are only in-
terested in the magnetic field along the volume of the
block itself. Unfortunately, the magnetic field at a given
point does not only depend on properties at this partic-
ular point but the entire (unbounded) space needs to be
taken into account.

Since finite element techniques can only deal with
finite domains, an auxillary domain such as shown in
Figure 1 needs to be introduced. These non-physical
boundaries result in an additional error in the numer-
ical solution which increases with a decreasing domain
size. As a rule of thumb, the employment a cut-off re-
gion with a radius of about five times the size of the geo-
metrical size scale leads to results which are only slighly
affected by the assumption of a finite domain. In the



past, different techniques for a more efficient treatment
of the outer domains have been proposed. An exam-
ple is the introduction of infinite elements which map
a certain part of the geometry to infinity. Even though
such techniques decrease the numerical error, they still
require to solve the equations on an extended geome-
try where the solution is not of interest and, therefore,
entail an increased number of degrees of freedom and a
higher calculation time. In this work, we implement a
method to eleminate all degrees of freedom which are
irrelevant for the physical model.

2 GOVERNING EQUATIONS

We restrict our analysis to the case of magnetostatics.
The approach presented and all resulting equations are
not restricted to micro- or nano-dimensional systems
but valid on all length scales. For our systems, we as-
sume that all external current densities vanish, jext ≡ 0.
Therefore, Maxwell’s equations of magnetostatics are
given by

∇ ·B = 0 (1)

∇×H = 0 (2)

where H denotes the magnetic field, and B the magnetic
flux density. With the curl of H zero in the entire space,
H may be written as the gradient of a scalar potential
ϕ, in the form H = −∇ϕ. Further, magnetic field and
flux density are connected by

B = µ0(M + H) (3)

with M the magnetization of an object which is 0 in the
case of vacuum.

2.1 Scalar equations

By substitution of equation (3) into equation (1) and
employing the potential representation of H, we ob-
tain the governing equation for the magnetic potential
ϕ which is given by the Poisson equation

∆ϕ = ∇ ·M (4)

with ∆ the Laplacian operator. If we consider magnetic
objects surrounded by a non-magnetic medium (or also
another magnetic object with different magnetic prop-
erties), the solution needs to satisfy certain boundary
conditions. Similar to electrostatic problems where the
electric potential in the direction of the surface normal
n̂ exhibits a jump given by the electric surface charge σ
along the interface, the jump in the magnetic potential
is given by the outward components of the magnetiza-
tion vector M

∂ϕ

∂n̂
= n̂ ·M. (5)

In principal, we need to find a solution of equation (4)
for all space points r ∈ Rn which satisfies boundary con-
ditions of type (5) along all material interfaces.

2.2 Integral formulation

In order to eliminate the degrees of freedom (DOF)
along the unbounded domain where M ≡ 0, we intro-
duce the decomposition ϕ = ϕ1 + ϕ2. Let Vmag denote
the magnetic volume with boundary Γ, we assume ϕ1

to be a solution of

∆ϕ1 = ∇ ·M ∀r ∈ Vmag

ϕ1 = 0 ∀r ∈ Rn\Vmag
∂
∂n̂ϕ1 = n̂ ·M ∀r ∈ Γ

(6)

where ∂
∂n̂ denotes the derivative in the direction of the

surface normal n̂. With this particular choice of ϕ1, ϕ2

is a solution of the homogeneous Laplace equation and,
consequently, a harmonic function. The theory of har-
monic functions provides an integral formulation which
allows for the evaluation of ϕ2 at any given point r ∈ Rn

ϕ2(r) =

∫
Γ

ϕ1(r′)
∂

∂n̂
G(r, r′) dr′. (7)

The function G(r, r′) denotes the Greens function of the
boundary value problem which depends on the system
dimension n with respective representations

G(r, r′) =
1

2π
ln(|r− r′|) for n = 2

G(r, r′) =
1

4π

1

|r− r′|
for n = 3

However, the evaluation of the integral expression is nu-
merically costly (storage of O(N5/3), with N the num-
ber of elements [3]). Therefore, instead of calculating
expression (7) on the entire domain Vmag, we restrict
the evaluation to the domain boundary Γ and treat
these values as the data of the corresponding Dirich-
let problem. Therefore, for a three-dimensional system,
ϕ2 needs to be a solution of

∆ϕ2 = 0 ∀r ∈ Vmag

ϕ2(r) =
∫

Γ
ϕ1(r′) ∂

∂n̂G(r, r′) dr′

+
(

Ω(r)
4π − 1

)
ϕ1(r) ∀r ∈ Γ

(8)

with Ω(r) the solid angle of the surface element at the
respective position r. The additional term results from
taking the limit r → Γ due to the singularities in the
Greens functions. For all smooth boundaries Ω is given
by 2π, an example for a non-smooth surface will be dis-
cussed in section 3.2



Figure 2: Sparsity plots for system matrices assembled
in an FEM- (left) and a hybrid FEM-BEM framework
(right). Even though the FEM-BEM matrix is of much
smaller dimension (gray area), it may contain a similar
number of non-zero matrix elements.

mesh type Elements Bound. Ele. #DOFs
FEM 31944 1596 43725
FEM/BEM 2128 528 6798

Table 1: Different mesh parameters for the cube system
discretized in an FEM- and FEM-BEM framework.

2.3 Hybrid FEM-BEM method

At this point, we have successfully eliminated the aux-
iliary domain, the governing equations (6) and (8) are
completely specified by the physical properties of the do-
main Vmag. Since we have effectively recast properties
of the domain to the domain boundary while some parts
remain governed by subdomain equations, this method
is often refered to as hybrid FEM-BEM method. Obvi-
ously, such an approach results in a significant reduction
of the number of DOFs of the system. In order to give
an example on how this formulation affects the numeric
parameters, we consider the magnetic cube shown in
Figure 1 with a side length of a = 1. If a high accuracy
is desired, the surrounding sphere for the pure FEM ap-
proach should have approximately a radius of five times
the size scale of the considered geometrical structure.
Therefore, we set R = 5. The mesh parameters are cho-
sen with a maximum mesh size of 0.2 on the cube with
a growth rate of 1.2 on the surrounding sphere. The
corresponding mesh for the hybrid method is given by
the partial mesh of the sole cube. Mesh parameters and
resulting number of DOFs are given in Table 1.

Even though we need to solve for two variables ϕ1,
ϕ2 by emploment of the hybrid approach, the reformu-
lation of the original equations and the entailed elimina-
tion of the surrounding domain results in a reduction of
the number of DOFs down by more than 80%. On top
of that, it is important to note that the combined equa-

tions (6) and (8) are still exact and do not introduce
an additional approximation error due to an arbitrary
cut-off parameter. However, as a general law of nature
states the conservation of the complexity of a problem, it
is universally known that whenever things look to good
too be true, they usually aren’t. So, what makes the
application of this method challenging or in other words
what are the cost for the reduced number of DOFs?

In order to understand the numerical issues which
result from the reformulation of the original problem,
some basic knowledge about finite element methods in
general is required: In a first step, when solving a nu-
merical model, the stiffness matrix of the system is as-
sembled. This matrix is a quadratic N ×N -matrix with
N the number of DOFs. An advantage of these system
matrices is their sparsity. A matrix component Aij is
only non-zero, when its indices correspond to overlap-
ping basis functions or, in other words, when individual
nodes of the finite element mesh are coupled/contiguous
to each other. A typical system matrix is shown in Fig-
ure 2(a), only the black dots correspond to entries with
a value unequal to zero. For sparse matrices, very effi-
cient algorithms for numerical operations such as LU -
decomposition are known which result in a decreased
solving time for the linearized set of equations.

Now, what happens when expressions such as equa-
tion 7 are introduced? Basically, all elements are cou-
pled to the boundary elements and, therefore, we lose
the degree of sparsity as is shown in Figure 2(b). Even
though the number of DOFs may go down, we might
still end up with a system that may no longer be solv-
able with spezialized solvers such as UMFPACK because
these solvers may not perform well on dense matrices.

3 THREE-DIMENSIONAL MODELS

In order to test advantages and limitations of this ap-
proach implemented into COMSOL Multiphysics, we
will employ the FEM-BEM frame for the solution of
various geometries. The application of this method to
full three-dimensional problems is straight forward. The
settings chosen in the following sections cover all main
aspects necessary for the analysis of an arbitrary three-
dimensional magnetostatic problem.

3.1 Smooth surfaces: the sphere

As a benchmark model, we choose the homogeneously
magnetized sphere of radius R = 1 and magnetization
M = ẑ. The centre of the sphere is set as the origin
of the coordinate system. By employment of the axial
symmetry of the geometry, the magnetic scalar potential
ϕ can be expanded into a series of Legendre polynoms



#Elements #Bnd. Elements ∆H1(ϕh) tsol [s]
97 80 0.0757 1.466
324 152 0.0470 1.981
1251 320 0.0324 3.113
9098 1240 0.0230 17.191
18119 3495 0.0036 34.725

Table 2: H1-error and calculation time for different
mesh settings.

which results in the analytic solution [4]

H(r) = −1

3
M r < R (9)

H(r) =
1

4π

(
3(M · r)r

|r|5
− M

|r|3

)
r > R (10)

As a quality measure, we evaluate the H1-error of the
approximate solution ϕh = ϕh,1 +ϕh,2 in comparison to
the exact solution ϕ

∆H1(ϕh) = |ϕh − ϕ|H1(Vmag)

=

(∫
Vmag

|∇ϕh(r)−∇ϕ(r)|2 dr

)−1/2

In equation (8), we may set the solid angle Ω ≡ 2π since
the surface of the sphere is smooth. The resulting errors
and solution times for different mesh cases are given in
table 2.

It needs to be pointed out that a high amount of the
calculation time is necessary for the assembly of stiff-
ness and constraint matrices and full FEM schemes may,
therefore, reach higher perfomances. For the sphere ex-
ample, an error of ∆H1 = 7.9× 10−3 was achieved with
a calculation time of 3.2s on a finite element grid with
more than 40,000 DOFs. However, at this point, we
may notice that the FEM-BEM solution for the mag-
netic field converges to the exact solution in regard to
the function space L2(Vmag) with increasing mesh reso-
lution.

3.2 Angular surfaces: the cube

In contrast to the preliminary section, geometries with
edges such as the cube do not satisfy the condition
Ω ≡ 2π along all points of the boundary and an in-
appropriate choice results in deviations from the actual
solution. As a test case, we consider a cubic geometry
with side length a = 1 and magnetization M = ẑ. As
shown in Figure 3(a), a constant solid angle results in
non-physical deviations along the geometry edges.

However, the correct Ω-values along the edges can
easily be deduced: a smooth surface may be locally ap-
proximated by a half space which corresponds to half

Figure 3: FEM-BEM solutions for ϕ under the assump-
tion M = ẑ for a cubic geometry with side length a = 1.
The colorscale ranges linearly from -0.207 (blue) to 0.207
(red). (a) shows the results of a calculation carried out
with a constant value for the solid angle Ω ≡ 2π. As
highlighted in the inset, strong (unphysical) features
are present along the edges. (b) presents the result
with the corrected values Ω, the inset shows the L2-
approximation of the solid angle which is 2π, π and π/2
along the surfaces (dark), edges (orange) and in the cor-
ners (bright), respectively.

the full solid angle of 4π. Along the edges, the local
approximation resembles half and in corners a quarter
of a half space so that the respective values are given by
π and π/2. For a more rigorous and general discussion
about solid angles refer to, e.g., [5].

Unfortunately, this assignment does not make sense
for L2-functions on neither the domain Vmag nor the
boundary Γ since edges and corners each form null sets
in the respective case. For our approach, it is sufficient
to have a proper definition along the boundary since Ω
is part of the Dirichlet data only. Therefore, we need an
extension Ω ∈ L2(Γ) which was realized by an additional
weak boundary equation. The result is shown in the
inset of Figure 3(b). Dark areas correspond to a value
of 2π, orange to a value of π while the angle at the
corners is set to π/2 (bright).

The application of this approximation of the solid
angle reduces edge deviations as shown in Figure 3(b).
The magnetic potential ranges between -0.207 and 0.207
which coincides with the results obtained by pure FEM
methods.

3.3 Inclusion of an outer domain

Even though we have gone through quiet some efforts
to eliminate all exterior DOFs, there may be systems,
where the magnetic field outside the magnetic volume is
of interest. A common example is formed by magnetic
particles that interact with a MEMS/NEMS-device but
are small enough that their perturbation of the field
configuration may be omitted [6].

Again, it is preferable to model as little additional



Figure 4: FEM-BEM solution for the magnetic field
outside a homogeneously magnetized sphere for an arbi-
trarily shaped physical domain with neutral boundaries.
(a) shows the arbitrary domain, (b) the magnetic stray
field inside. Subplot (c) shows the distribution of the
magnetic potential along the surface employed for the
Dirichlet problem of ϕ2.

volume as possible without introduction of unphysical
boundary effects. Figure 4 shows an example of an arbi-
trarily shaped exterior domain with a homogeoneously
magnetized sphere inside. In principal, the magnetic
stray field of the sphere can be calculated by evalu-
ating the inner magnetic potential in a first step and,
afterwards, by employing equation (7) to obtain ϕ on
the outer regions. Since numerical integrations are very
time consuming, we restrict the integration to the do-
main boundaries again. The potential on the sphere is
calculated as explained above, the outer region follows
from the homogeneous Laplace equation ∆ϕ2 = 0 with
the integral values acting as Dirichlet data on both, in-
ner and outer boundaries. Note that the variable ϕ1

does not add additional DOFs since it was set to ϕ1 ≡ 0
along all non-magnetic domains.

The result of the calculation is shown in Figure 4.
We find that the magnetic stray field is not influenced
by the presence of (non-physical) boundaries and resem-
bles a perfect dipolar characteristic.

4 A TWO-DIMENSIONAL
APPROXIMATION

As explained in section 2.3, the system matrix of the
hybrid FEM-BEM method becomes increasingly dense
the more surface elements can be found in the model. In
particular, geometries with a high aspect ratio or more
generally with a high surface to volume ratio should
not be modelled staight forward in a three-dimensional
fashion. Since the magnetic stray field of a thin (two-
dimensional) magnetic layer is three-dimensional, a re-
duction of the dimensionality is not possible in FEM
frameworks. For the FEM-BEM method, we will de-
velop an effective two-dimensional formulation under
some reasonable physical assumptions.

Figure 5: Magnetic properties of a homogeneously mag-
netized sheet of dimensions ax = 1.2, ay = 0.8 and
az = 0.1, with M = x̂. The inset shows a schematic
representation, the surface plot the magnetic potential
ϕ calculated in the FEM-BEM framework.

In order to model a thin magnetic layer, we may not
employ the two-dimensional expression of the Greens
function since this would correspond to a cuboid of in-
finite length in the out-of-plane direction. Such an ap-
proach would result in an overestimation of the result-
ing stray fields since a much higher amount magnetic
material is contained. Instead, we consider the block
shown Figure 5 with side lengths ax, ay and az, where
we assume the block height to be much smaller than the
lateral dimensions, az � ax, ay. According to Figure 5,
the boundary integration may be split up into∫

Γ

ϕ1
∂G

∂n̂
dr′ =

∫
Γ‖

ϕ1
∂G

∂n̂
dr′ +

∫
Γ⊥

ϕ1
∂G

∂n̂
dr′ (11)

with Γ‖ and Γ⊥ the respective surface elements with unit
normals parallel and perpendicular to the xy-plane. If
the lateral dimensions of the sheet are very low, the mag-
netic configuration is usually confined in the sheet plane
itself [7] and, therefore, the average outward compo-
nent 〈m2

z〉 is very small. Consequently, we have ϕ1(r) ≈
ϕ1(x, y) and, therefore, it is possible to show∫

Γ⊥

ϕ1
∂G

∂n̂
dr′ =

∫
ϕ1

(∫
∂G

∂n̂
dz′
)

dx′ dy′

= − az
4π

∫
Γ⊥

ϕ1 dx′ dy′(
∆r2

xy + a2
z/4
)3/2

and ∫
Γ‖

ϕ1
∂G

∂n̂
dr′ =

az
4π

∫
ϕ1

n̂ ·∆rxy
|∆rxy|3

dr′.



with ∆rxy = (x − x′)x̂ + (y − y′)ŷ. A result for the
calculation is shown in Figure 5. The subdomain shows
the correct expected behavior, however, deviations can
be found in the corners of the domain which are due to
singularities of the integrand. Here, further tests will be
necessary in the future to provide a smoother boundary
behavior.

The calculation time of the hybrid approach (0.15
s) is significantly lower than the resulting values for the
FEM framework (1.72 s). Additionally, the block height
az enters the governing equations only as a numeric pa-
rameter in the integration along Γ⊥ for the FEM-BEM
framework, but leads to an increased number of elements
(in order to maintain the minimal element quality) when
applying an FEM scheme. Therefore, calculation times
are independent of the value az in the first case while
in the latter, they rapidly increase with decreasing film
thickness. Therefore, this method might provide a valu-
able tool, especially, in the field of thin ferromagnetic
film devices. For more information on this field of ap-
plications, see also Ferromagnetic materials for MEMS-
and NEMS-devices in these conference proceedings [8].

CONCLUSION AND OUTLOOK

We have successfully implemented a hybrid FEM-BEM
method into COMSOL Multiphysics and shown that
this approach allows for an open boundary modeling
of electromagnetic fields. At the current stage, the im-
plementation does not provide significant performance
advantages in respect to calculation time or memory re-
quirements for full three-dimensional models due to the
loss of sparsity of the stiffness matrix and the highly
spezialized solvers applied. However, the additional em-
ployment of modern techniques such as the H2-method
form promising candidates a for further improvement
and may result in a valuable tool for the efficient cal-
culation of electromagnetic fields. In contrast to three-
dimensional systems, the proposed method offers a strong
performance increase for systems that can be reduced to
a two-dimensional model.
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