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Coup l e d  F l ow L aw s

Introduction

Understanding what happens during the transition from slow flow in porous media to 
fast flow in a channel is critical in many environmental cases and applied problems This 
type of flow appears near rivers, estuaries, wellbores, caverns, and lava tubes, to name 
a few examples.

Traditionally, the quantitative assessment of transitioning flows has been the domain 
of those with time and tools to work out their own code because it requires switching 
between mathematical expressions for different flow laws. Darcy’s law describes slow 
flow at a distance from the channel; the Navier-Stokes equations govern free or 
open-channel flows; and in between, where the fluid moves in porous media but shear 
is nonnegligible, the Brinkman or Forcheimer equations apply. This example 
demonstrates how to model such a transition using predefined equations in the Earth 
Science Module.

The following model examines transitioning flow by zooming in on oil movement to 
and within a perforated well. The analysis begins by coupling Darcy’s law and the 
Brinkman equations to represent flow in porous media that quickens toward a 
perforation in the well casing. Next, it examines fluid movement into and within the 
well by coupling the Navier-Stokes equations to the Darcy-Brinkman model. Albeit 
counterintuitive, time-dependent Brinkman and Navier-Stokes are well known to be 
relatively easy to solve. This model instead analyzes a steady-state system.

By giving you the ability to link flow laws, modify predefined equations, and even 
freely define your own governing equations, COMSOL Multiphysics sees abundant 
use in analyzing conventional, coupled, and nonconventional flows (see Ref. 1 and 
Ref. 2).

Model Definition

This Darcy-Brinkman example begins by overviewing the model setup and continues 
with the equations and the boundary conditions used in the analysis. Implementation 
details follow the mathematical background. The model triggers weak variables to 
implement the coupling between Darcy’s law and the Brinkman equations. Finally this 
discussion reviews results and outlines the mechanics for building the model. The next 
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example (Transitional Flow: Darcy-Brinkman–Navier-Stokes on page 69) adds the 
Navier-Stokes equations directly on top of the Darcy–Brinkman model file.

First examine a general description of the Darcy–Brinkman model depicted in 
Figure 1. Oil moves through a thin porous layer towards a perforation to a well. The 
fluid flow follows Darcy’s law in the far field (that is, 1 m < x < 4 m) and the Brinkman 
equations near the well opening (between 0.1 m < x < 1 m). The layer is 0.875 m thick 
and bounded above and below by impermeable materials that confine the permeable 
reservoir layer. For simplicity, assume the layer has homogeneous and isotropic 
hydraulic properties, and the fluid has constant density and viscosity. You know the flux 
of fluid at the inlet and the pressure at the perforations. The flow field is steady state.

Figure 1: Model geometry showing boundary conditions for coupling Darcy’s law (1 m < 
r < 4 m) and the Brinkman equations (0.1 m < r < 1 m).

D A R C Y ’ S  L A W

Darcy’s law describes fluid flow driven by gradients in pressure and elevation potential. 
The dependent variable in Darcy’s law is pressure, p. The flows are slow enough that 
velocity head is negligible. For a steady state, the governing equation is

In this equation, κ denotes the permeability (m2), η is the dynamic viscosity (kg/
(m·s)), ρf gives the fluid density (kg/m3), and g the acceleration of gravity (m/s2). 
Further, D is the coordinate for vertical elevation (m), and Qs is the volumetric flow 
rate per unit volume of reservoir for a fluid source (1/s). You set D to zero in this 

∇ κ
η
---∇ pdl ρf gD+( )–⋅ Qs=
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problem because elevation potential is negligible given that the flow field is very thin. 
Because this model deals with multiple flow laws, this equation appends the “dl” 
subscript to p to denote the Darcy’s law equation.

With a steady state, flow into the reservoir study area must equal the pumping rate. 
The Darcy velocity gives the inlet condition as 

where W is the volumetric pumping rate for the perforated interval (m3/s), rres equals 
the reservoir radius (m), and b is the reservoir thickness (m).

For a continuous solution across the interface between the zones of Darcy and 
Brinkman flow, the pressure and velocities from Darcy’s law must equal the pressure 
and velocities from the Brinkman equations. Because a Neumann statement on flux 
already defines the inlet boundary, use the following constraint on pressure for the 
Darcy–Brinkman interface:

In this equation, the subscript “br” denotes the Brinkman equations. This expression 
is a Dirichlet boundary statement.

With no flow through the confining units that overlie and underlie the permeable 
reservoir zone, the boundary conditions for Darcy’s law are

where n is the unit vector normal to the boundary. 

B R I N K M A N  E Q U A T I O N S

The Brinkman equations describe fluid flow in porous media where velocities are high 
enough that momentum transport by shear stress is important. Brinkman problems 
combine a momentum balance in the r and z directions with the continuity equation, 
giving dependent variables of directional velocities u and v as well as the pressure p. 
The Brinkman equations for steady state flow are

udl
κ
η
---∇pdl– W

2πrresb
---------------------= =

pdl pbr=

n κ
η
--- ∇pdl( )⎝ ⎠
⎛ ⎞⋅ W

2πrresb
---------------------–= ∂Ω inlet

pdl pbr= ∂Ω Darcy-Brinkman interface

n κ
η
--- ∇pdl( )⎝ ⎠
⎛ ⎞⋅ 0= ∂Ω Confining layers
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 (1)

where ρ is density (kg/m3), η gives the dynamic viscosity (kg/(m·s)) u equals the 
velocity vector (m/s), p is pressure (kg/(m·s)), ε is the porosity, and k (m2) denotes 
the permeability. The equation can account for the influence of small gravity and 
compressibility effects in the force term, F (N/m3), which in this example equals zero. 
Some argue that k in the Brinkman equations differs slightly from κ in Darcy’s law 
(Ref. 2), but this example calls for the same permeability in both flow zones.

From the Brinkman side of the Darcy–Brinkman interface you constrain velocity 
because the boundary condition on the Darcy side fixes the pressure. The velocity 
constraint on the Brinkman side of the interface reflects that velocities are dependent 
variables in the Brinkman equations but not in Darcy’s law. The boundary condition 
on velocities is

To implement the condition, use the Darcy velocities, udl, that COMSOL 
Multiphysics automatically calculates.

The confining layer and well casing are impermeable to flow. Approximate this 
situation with the no-slip condition

This equation eliminates all components of the velocity vector at the boundary.

Getting a unique solution to this problem requires defining the pressure at the well 
because the model prescribes flux conditions for all other boundaries. The constraint 
on pressure is the simple statement that

For the Brinkman problem, the boundary conditions are now

∇ η
ε
--- ∇ubr ∇ubr( )T

+( )⋅–⎝ ⎠
⎛ ⎞ η

k
---ubr ∇pbr F–+⎝ ⎠
⎛ ⎞– 0=

∇ ubr⋅ 0=

ubr udl=

ubr 0=

pbr pwell=

ubr udl=    ∂Ω Darcy-Brinkman interface

ubr 0              =       ∂Ω Confining layers

ubr 0  =      ∂Ω Well casing

pbr pwell = ∂Ω Perforation
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Modeling in COMSOL Multiphysics

The two equations in this analysis are fundamentally compatible as both describe fluid 
flow, pressure distributions, and velocities. Even so, the dependent variable in Darcy’s 
law is pressure alone, whereas pressure and directional velocities are the dependent 
variables in the Brinkman equations. The difference in the number of dependent 
variables amounts to a slight incompatibility in form, which you circumvent by 
imposing non-ideal weak constraints on the equation system. The weak constraints 
provide new integral equations in which the Lagrange multipliers μ1 are dependent 
variables. The constraints add one Lagrange multiplier to Darcy’s law and two to the 
Brinkman equations to make up for the difference in the number of degrees of freedom 
given by the two governing equation systems on the boundaries. Adding the new 
Lagrange multipliers is easy: go to the Application Mode Properties dialog boxes, find 
the Weak constraints list, and select On. To make the weak constraints non-ideal, select 
Non-ideal from the Constraint type list.

To find out more about weak constraints and weak formulation equations, see “Using 
Weak Constraints” on page 350 in the COMSOL Multiphysics Modeling Guide.

Model Data

The data for parameterizing the model are:

VARIABLE UNITS DESCRIPTION EXPRESSION

 gr m/s2 Acceleration due to gravity 9.82

 ρf kg/m3 Fluid density 900

 ηf Pa·s Dynamic viscosity 0.002

 ε Porosity 0.4

 κ m2 Permeability 10-10

 b m Thickness of layer 1

 rres m Reservoir radius 4

 rw m Well radius 0.1

 W m3/s Pumping rate 10-3

 pwell Pa Pressure at perforation 105
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Results and Discussion

Figure 2 shows the solution to the Darcy-Brinkman problem where Darcy’s law 
governs slow flow far from the well, but near it the Brinkman equations apply. The 
impact of the switch between flow laws occurs at x = 1 m. The streamlines show the 
fluid moving from the inlet at the right to the well on the left. The streamlines funnel 
because the flow is moving into a break or perforation in the well casing.

Figure 2: COMSOL Multiphysics solution for Darcy’s law (1 m < r < 4 m) and the 
Brinkman equations (0.1 m < r < 1 m). The results shown are pressure (surface plot and 
contours) and velocities (streamlines). Note that the vertical axis is expanded.

Figure 3 and Figure 4, respectively, illustrate the pressure and velocity estimates from 
the perforation to a distance of 2 m beyond the Darcy-Brinkman interface. These 
estimates vary smoothly across the Brinkman-Darcy interface. Pressure increases with 
distance from the well, and it moves the fluid to the perforation. The velocities 
decrease with distance from the well until they reach an almost constant value in the 
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Darcy flow zone. The fact that the pressure estimates vary smoothly from Brinkman 
(r < 1 m) to Darcy (r > 1 m) flow indicates a stable solution.

Figure 3: Pressure across the Darcy-Brinkman interface. Cross section along z = -0.5 m 
from r = 0.1 to 3.0 m.

Figure 4: Velocity across the Darcy-Brinkman interface. Cross section along z = -0.5 m 
from r = 0.1 to 3.0 m.
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This COMSOL Multiphysics example describes a straightforward protocol to couple 
two compatible flow laws with different dependent variables, the Darcy and Brinkman 
flow equations. Both Darcy’s law and the Brinkman equations characterize flow in 
porous media. Because Darcy’s law provides for no momentum transport by shear, it 
can overpredict flow rates in fast flow zones. Coupling to the Brinkman equations 
describes the added energy transformation.

The model is easy to modify and apply to a number of transitional flow scenarios 
including a river bottom, quickening flow near a well, and fluid moving in and around 
fractures. The next example adds the Navier-Stokes equations in the well to 
characterize the full transition between porous media and free surface flow.
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