Variably Saturated Flow
Application ID: 500
This example utilizes the Richards’ Equation interface to assess how well geophysical irrigation sensors see the true level of fluid saturation in variably saturated soils. The challenge to characterizing fluid movement in variably saturated porous media lies primarily in the need to describe how the capacity to transmit and store fluids changes as fluids enter and fill the pore space. Experimental data for these properties are difficult to obtain. Moreover, the properties that change value as the soil saturates happen to be equation coefficients, which makes the mathematics notoriously nonlinear.
The Richards’ Equation interface provides interfaces that automate the van Genuchten and the Brooks and Corey relationships for fluid retention and material properties that vary with the solution.
This model example illustrates applications of this type that would nominally be built using the following products:
however, additional products may be required to completely define and model it. Furthermore, this example may also be defined and modeled using components from the following product combinations:
The combination of COMSOL® products required to model your application depends on several factors and may include boundary conditions, material properties, physics interfaces, and part libraries. Particular functionality may be common to several products. To determine the right combination of products for your modeling needs, review the Specification Chart and make use of a free evaluation license. The COMSOL Sales and Support teams are available for answering any questions you may have regarding this.