The Application Gallery features COMSOL Multiphysics® tutorial and demo app files pertinent to the electrical, structural, acoustics, fluid, heat, and chemical disciplines. You can use these examples as a starting point for your own simulation work by downloading the tutorial model or demo app file and its accompanying instructions.
Search for tutorials and apps relevant to your area of expertise via the Quick Search feature. Note that many of the examples featured here can also be accessed via the Application Libraries that are built into the COMSOL Multiphysics® software and available from the File menu.
This verification model analyzes the acoustics of two coupled rooms using the Acoustic Diffusion Equation interface of the Acoustics Module. The results of the model agree with numerical results that are validated against measurements in a reference paper. Read More
In this tutorial the geometry of an occluded ear-canal simulator is optimized to match the acoustic response of a given ear. The target data in this model stems from a simulation of an ear canal, but it can also be based on measurements, or a response specified by a standard. Read More
This model studies a small orifice located in a duct. The transmission and reflection coefficients of the system are computed in the presence of a bias flow using the linearized Navier-Stokes equations. For certain frequencies the transmission coefficient shows amplification (T>1). This ... Read More
A demultiplexer is a device that directs different frequency bands to different outputs. In this tutorial model, we will design a demultiplexer by performing shape optimization on all initial circular boundaries in a sonic crystal (phononic crystal) configuration. The model uses shape ... Read More
Finding acoustic eigenmodes in problems solved with linearized convected acoustic interfaces can be a challenging task. The solution will most often return several non-acoustic vorticity and entropy modes. These are highly damped waves that do not propagate at the speed of sound but with ... Read More
Solving very large pressure acoustics models in the frequency domain can be challenging. Several iterative solver suggestions exist for the default physics setups and the default quadratic Lagrange discretization. For very large models it can be advantageous to switch from quadratic to ... Read More