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Overview

* Introduction: HL-LHC Nb;Sn 11 T magnet for the Large Hadron Collider
e Quench protection

e Comsol simulations

e Comparison with experimental observations

e SIGMA model generation tool

e Summary
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Large Hadron Collider: Lots of superconducting magnet
needed to manipulate the particle beam and fix its trajectory!



HL-LHC Nb;Sn 11 T magnet

Comsol simulation of the 11 T magnet 11 T dipole field
in the bore
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11 T prototype in SM18 magnet test station,
courtesy: F. Savary



What is a quench?
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Low-temperature-superconductor-based magnets
e Run with very high current density in the windings, on the order of 500 — 1000 A/mm?
e Only superconducting at extremely low temperature (typically run at 1.9 K)

* If conductor heats up by some Kelvins = No longer superconducting and heating up
very fast due to high current density, so-called quench

* Quench protection: Detect quench and discharge magnet as fast as possible, to keep
the peak temperature below 350 K

e Discharge time given by L/R = Rapid increase of resistance for quick discharge



Quench protection methods
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Quench protection methods

e Quench heaters (resistive heater strips), glued to the side of superconducting
windings = Heat flow through insulation into the windings = Magnet is brought to
normal state and stored magnetic energy is distributed over the magnet

e Coupling Loss Induced Quench (CLIQ): Discharge of capacitor across half the magnet
coils = Produces current oscillations and inter-filament coupling losses (special type
of eddy current loss) = Magnet is brought to normal state and stored magnetic
energy is distributed over the magnet

* Energy extraction (Discharge over a dump resistor) = Conceptually straight-forward
but leads to larger voltages, due to non-distributed nature
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Comsol simulations
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Comsol simulation

e Physics: 2D component for magnet, 1D component
for quench heaters, coupled together

 Stationary initial condition + transient simulation
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50 e Strongly non-linear properties (temperature and
" magnetic-field dependent) + iron BH-curve

40 e 2D component: Electro-magnetic (mf), heat

20 transfer (ht), internal circuit (ge), quench

0 integration (dode)

e 1D component: Heat transfer (ht)
e All modules coupled together
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Do the simulation results make sense?
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* Measurements performed on 11 T model magnet (performed at CERN magnet test

facility)

* Protection studies: Quench heater only versus quench heater + CLIQ
* |In spite of uncertainty in material properties, close consistency between calculation

result and measurement

e Simulation model captures the relevant physics needed for simulating this type of

magnet



What is the relevance?
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l Other models: 11 Tesla, D1 ... and many more!

= SIGMA model generation tool

__________ ~ I e Java-based tool for automatically generating simulation
models of accelerator magnets

e Generates simulation models (Comsol), with correct
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geometry, material properties, and physics

* Allows for interface with other typical tools used for
simulation magnet, such as the Roxie magnet design tool

* Developed at CERN and used by other institutes: CEA
Saclay, INFN, Fermi lab, Lawrence Berkeley National

= Laboratory, Tampere University of Technology, NHMFL, ...

== Geometry

« Materials * Powerful tool for simulating transient behavior of

« Physics accelerator magnets: Hotspot temperature, voltage to
ground, power supply to beam transfer function, eddy
currents in beam screen, mechanics, etc...

e All transient physics combined in reproducible models




Comsol application
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Comsol application

* For sharing simulation tools with collaborators, for example for quickly comparing
experimental observations to simulation results by the magnet test teams

e Under development



Summary
* For High-Luminosity upgrade at CERN: Development of hew Nb;Sn-based
accelerator magnets with very challenging quench protection

e Quench heaters and coupling-loss-induced-quench (CLIQ): Effective methods for
quickly bringing the superconducting magnet to normal state, thus protecting it
from permanent damage

e Comsol simulation: Multi-physics (electro-magnetic, thermal, ...), with non-linear
properties and coupled 1D and 2D components

* Simulation results validated against experimental measurements

* SIGMA model generation tool: Used for transient simulations of a wide variety of
superconducting magnets and used by a growing number of institutes
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