李峰宇¹, 何见超 陈森 王旭 王连旭 陈思 ¹

1蜂巢能源科技有限公司保定分公司

Abstract

锂离子电池外短路是被受关注的锂电池安全问题之一,当电池发生外短路时,瞬间电流极大,电芯内部会产生大量的热,当温度达到一系列副反应发生的温度将引发热失控。因此锂电池外短路仿真有着极为重要的意义。本模型通过数学模块的PDE接口及传热模块的耦合实现。电学模块通过PDE设置(0维),其核心利用电池剩余电量作为变量,通过COMOSL中内置的偏微分方程接口,将剩余电量对时间的偏导数作为流经电池的总电流。在偏微分方程中定义因变量qc,控制方程中ea为质量系数,da为阻尼系数,为守恒通量,f为源相,当ea设置为1,da设置为1,设置为0,源相f设置为-ls时,此时方程变为所需要方程。定义变量a=qc/q0,其中qc为剩余电量,q0为初始电量,a为荷电状态(SOC)。其中ls、Us为短路时的电流和电压,Ue和R分别为开路电压(OCV)和内阻。ls=Ue(a)/(R(a)+R0),Us=Ue(a)*R0/(R(a)+R0),开路电压Ue、内阻R随SOC变化数据来源于实测。通过热源Q=Is*Us实现传热模块和电模块的耦合。为了更直观地研究锂离子电池在发生短路时电流、电压、温度变化情况,暂时不考虑副反应产热及实际电池的安全装置保护。

Figures used in the abstract

Figure 1: 图为不同短路电阻条件下电流变化。随着短路电阻的增大,短路电流呈现减小的趋势,短路的持续时间也会相应的延长,利用该模型,预期将达到预测电池在不同短路电流作用下的最大短路时间,从而制定电池能够正常使用的安全边界窗口。