Drag Force on a Vertical Axis Wind Turbine with Airfoil Pitch Control

Junkun Ma October 3, 2019

Sam Houston State University

VAWT and HAWT

Vertical Axis Wind Turbine (VAWT)

Horizontal Axis Wind Turbine (HAWT)

VAWT vs. HAWT

Advantages:

- Easier to install and maintain
- No need to point into the wind
- Low risk for human and birds
- Can be install in urban area
- Easy to scale up and down

Disadvantages:

- Stall
- *Low efficiency*
- Aerodynamic stability
- Pulsatory torque

VAWT with Pitch Control

Airfoils pivot around the vertical axes parallel to the central rotation axis

COMSOL Model

Low Speed Laminar Flow

Navier - Stokes Equations:

Conservation of mass:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \boldsymbol{u}) = 0$$

Conservation of momentum:

$$\rho \frac{\partial \boldsymbol{u}}{\partial t} + \rho(\boldsymbol{u} \cdot \nabla) \boldsymbol{u} = \nabla \cdot [-p\boldsymbol{I} + \tau] + \boldsymbol{F}$$

Conservation of energy in the form of temperature:

$$\rho \boldsymbol{C}_{p} \left(\frac{\partial T}{\partial t} + (\boldsymbol{u} \cdot \nabla) T \right)$$

= $-(\nabla \cdot q) + \boldsymbol{\tau} \cdot \boldsymbol{S} - \frac{T}{\rho} \frac{\partial \rho}{\partial T} \Big|_{p} \left(\frac{\partial p}{\partial t} + (\boldsymbol{u} \cdot \nabla) p \right) + Q$

Definitions of Concepts

- Wind Attack Angle: angle between wind and camber line of the airfoil
- Support Arm Angle: angle between wind and airfoil support arm
- **Drag on the VAWT**: force acting on the central rotation axis within the along the wind flow direction
- *Lift on the VAWT*: force acting on the central rotation axis perpendicular to the wind flow direction

Drag and Lift Forces

The lift and drag forces are obtained by integrating the total stress components **spf.T_stressx** and **spf.T_**stressy along the air foil surfaces.

The pressure and viscous force components are also calculated separately by integrating the pressure components **p*spf.nxmesh** and **p*spf.nymesh** and viscous force components **-spf.K_stressx** and **-spf.K_stressy**.

COMSOL CFD Model

VAWT model with fixed airfoils

VAWT model with pitch controls

Sample Velocity & Pressure Fields

Velocity field for 50^o support arm and wind attack angles

Pressure field for 50⁰ support arm and wind attack angles

Sample Drag and Lift

Drag and lift forces for -70^o support arm and 0^o wind attack angles

- Both drag and lift forces reach a steady pattern
- Drag force is positive indicating that it is acting along the wind flow direction
- Lift force is negative indicating that it is pushing the VAWT downward
- Drag force for 0⁰ wind attack angle is zero with a none zero lift force

Pressure & Viscous Force Contribution

Drag and lift forces for 50° support arm and wind attack angles due to pressure and viscous force separately

• Contribution of viscous force is so small that it can be neglected

Effects of Wind Attack Angle

Effects of wind attack angle on drag and lift forces for 50⁰ support arm angle

Effects of wind attack angle on drag and lift forces for 80^o support arm angle

- Lift force initially drops into negative ranges and then rise to positive value
- Drag force rises and then drops for small support arm angles (<70°) and continuously increases for larger support arm angles (>80°)
- Drag force is always positive

Conclusions

- Both drag and lift forces show dependency on support arm and wind attack angles
- Drag force is always positive indicating a persistent force acting on the main rotation axis along the wind flow direction
- Lift force changes from an initially negative value to a positive one as the wind attack angle increases for all given support arm angles
- Magnitudes of both drag and lift forces depends on the combinations of support arm and wind attack angles

Future Work

- This study is based on laminar flow for low wind speed. Simulation based on turbulent flow is necessary for high wind speed
- Since the simulation is 2-D based, the effects of airfoil edge need to be considered using 3-D models and simulations

Questions?