

COMSOL Multiphysics[®] Based Inductance Estimation for Modeling Transformer Winding Faults in EMTP

Hemanth Kumar Vemprala, Ph.D. student

and Dr. Bruce A. Mork

Michigan Technological University,

Houghton, MI, USA

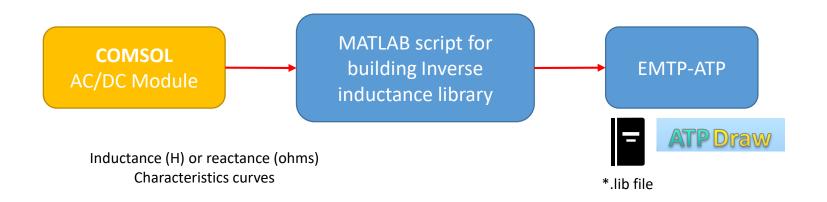
INTRODUCTION:

□ Power Transformer are the most crucial element in power system network

□ Protective systems are available to address the abnormality

- Avoid relay mis-operation
- Maintain reliability

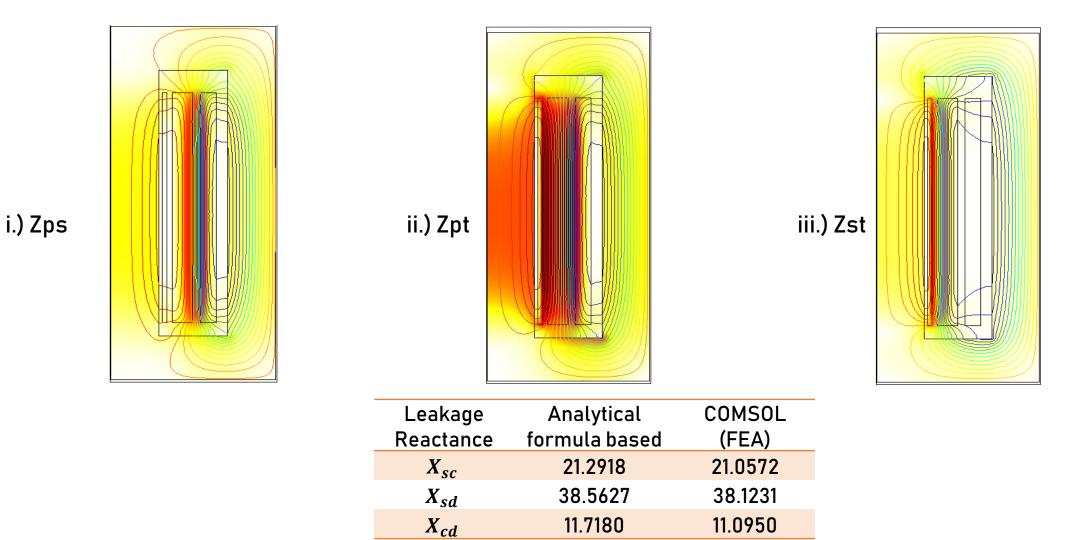
□ Inner winding faults produce minor current and are difficult to detect


- Turn-to-turn winding fault (T2T)
- Turn-to-ground winding fault (T2G)

□ Transformer model is the key to study and analyze the behavior

OBJECTIVE:

- □ Accurate representation of Transformer Winding fault
- □ Able to account minor effects
- Overcome simplification from Analytical Approaches
- □ Maintain user-friendly version of model for study and analysis
- □ EMTP-ATP Implementation worthy


Significance of FEA based approach

0.1 0.05 0 -0.05 -0.1 0.1 0.05 **Comparison of analytical approaches** to estimate the inductance vs FEA 0 method -0.05 -0.1 0.1 0.05 0 -0.05 1.141.3 + COMSOL (FEM) Cross-sectional area = constant 1.25 1.12 Maxwell1 •• Maxwell1 Maxwell2 1.2 1.1Width = varies Maxwell2 --- Perry 1.08 1.15 Perry 🕂 Stefan 1.061.1⊡ ··· Weinstein Inductance (in mH) + Stefan 1.05 1.04 Ĥ Weinstein 1.02 nce (in 0.95 0.9 0.98 0.85 0.96 0.94 0.8 0.75 0.92 Cross-sectional area = varies 0.7 0.9 Width = constant0.65 0.88 0.6 0.86 0.5 1.5 2 Varying breadth of rectangular coil section (cm) 2.5 1 з 4 Varying breadth of rectangular coil section (cm)

Method to estimate leakage inductances:

Case A: Healthy Transformer

Inductance calculation from simulation

Self and Mutual Inductance values

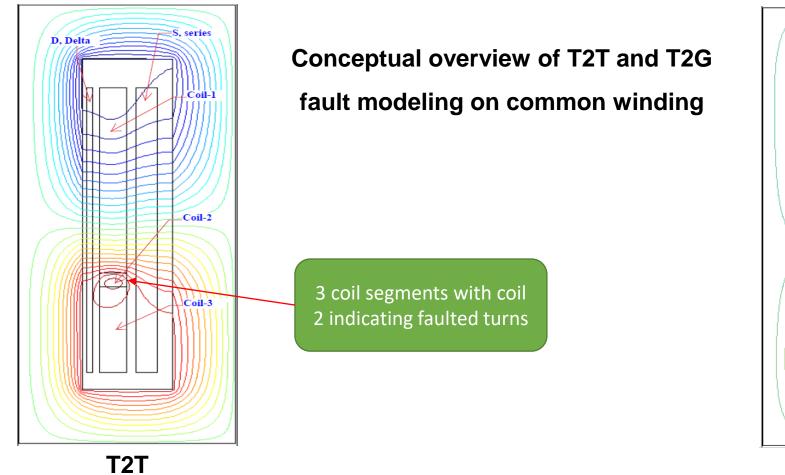
$$L_{12} = L_{self1} - \frac{M_{12}^2}{L_{self2}}$$

- One coil-pair at a time
- Coil 1 (source) = Current excitation (rated)
- Coil 2 (shorted) = Voltage excitation of 0V

Mf.L_1_3 (H) [mutual inductances b/w 1 & 3] mf.LCoil_3 (H) [Coil inductances]

Magnetic Solution Method

$$\mathbf{L}_{12} = \frac{2 * \mathbf{W}_{\mathbf{m}}}{I^2} = \frac{2 * \mathbf{mf.intW}_{\mathbf{m}}}{\mathbf{mf.ICoil}_1^2}$$


One coil-pair at a time
Coil 1 = Current excitation (I1)
Coil 2 = Current excitation (I2)
I1 x N1 = I2 x N2 (AT balance)
mf.Wm (J) [Magnetic Energy Density] (user defined regions only)

mf.intWm (J) [Total Magnetic energy]

(covers all regions)

Winding Fault simulations

-C1 (Healthy C₂ (Faulted)

D, Delta

S, series

T2G

Challenge: To model for any range of fault progression

Derive Characteristic curves

Parametric Sweep approach:

- Magnetic solution method
- T2T or T2G
- Fault position progression from bottom to top

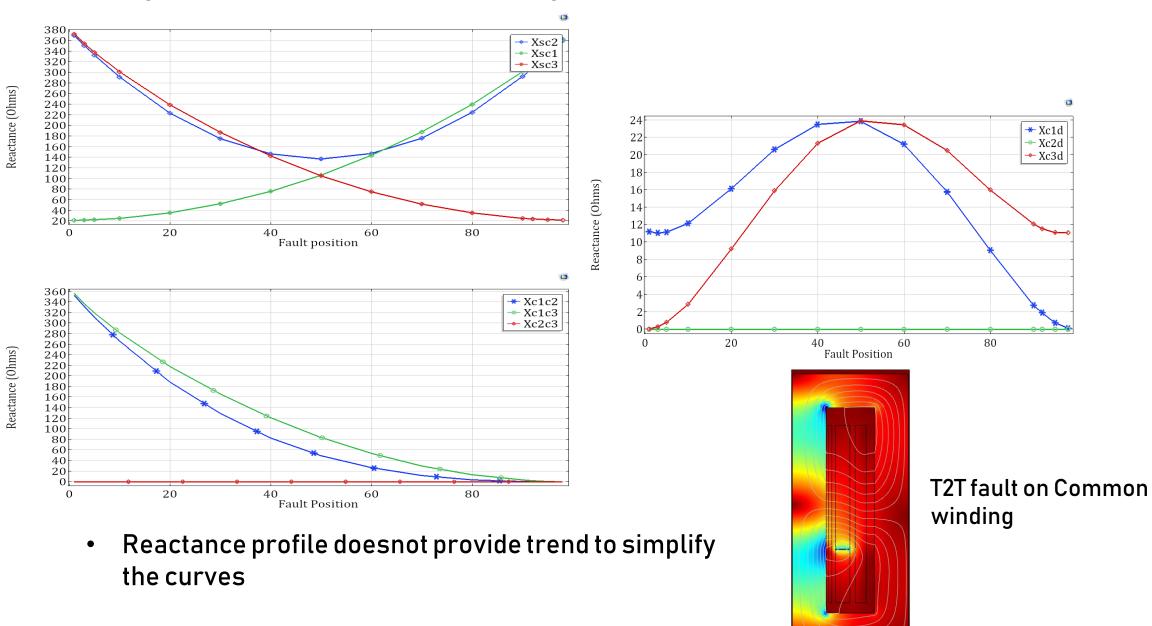
Properties

(FaultPos/100)* (T2TFault/444)*

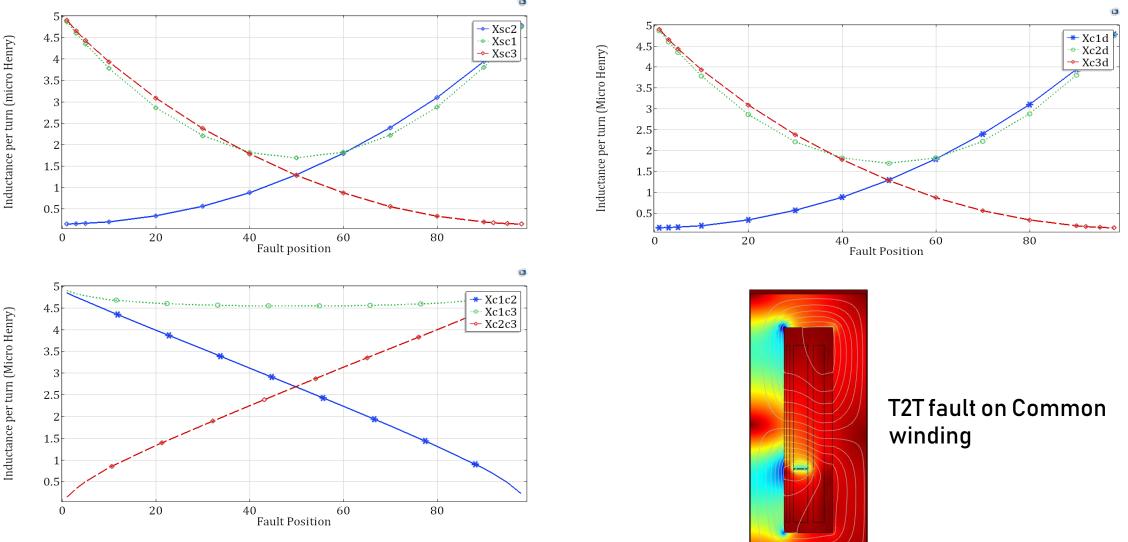
140 Nc-Nc2-Nc3 T2TFault round((FaultPos -100[A] -kc1"Itest"Ntest, -kc2"Itest"Ntest,

meters

- Faster output
- Ability to post-process multiple simulation cases into a table


	Settings P
	Parameters
COMSOL_CASE2_T2TR3_turns.mph (root)	
Global Definitions	Label: Paran
Pi Parameters 1	▼ Paramete
Common model inputs 1	• Faramete
Materials	** Name
Component 1 (comp 1)	C_height
▷	FaultPos
Geometry 1	T2TFault
Materials	C3_height
Magnetic Fields (mf)	C2_height
Mesh 1	C1_height
⊳ ~∞ Study 1	Ns
▲ ∽∞ Study 2	Nc
Parametric Sweep	Nd
Step 1: Stationary	Nc1
Solver Configurations	Nc2
🕨 弄 Job Configurations	Nc3
Results	ltest
Data Sets	Ic1
Views	lc2
Derived Values	Ic3
∬ TotalEnergyWithCore	kc1
∬ TotalEnergyWithoutCore	kc2
Tables	kc3
Magnetic Flux Density Norm (mf)	Ntest
Magnetic Flux Density Norm, Revolved Geometry	ls
Magnetic Flux Density Norm (mf) 1	Id
Magnetic Flux Density Norm, Revolved Geometry	
Xsc1c2c3_perturn	
Xsc1c2c3_ohms	
Xc1cx_perTurn	
Xc1cx_ohms	
Xsc1c2c3_perturn 1	
Xcxd_ohms	
Xcxd_PerTurn	
Xsc1c2c3_perturn 1.1	
⊳ 隨 Export	
Reports	
·	

		* I	Settings
	Value	Description	Parametric = Compu
	1.496 m	Common winding coil h	
	30	FaultPosition	
	1	raultrosition	L L L Dev
- haia	0.4488 m		Label: Par
	0.0033694 m		
	1.0438 m		
·	444		🗢 Study S
	444		Study 3
	140		
	310		
	1		Sweep type:
/100)*	133		1 21
	-100 A		bb
/Nc1	0 A		Paramet
/Nc2	0 A 0		Falallice
/Nc3	0.75188 A		
	0		FaultPos
	0		
	1		TOTE I
	1		T2TFault
	0		
	0		


Settings Properties $ imes$						
Parametric Sweep = Compute C Update Solution						
Label: Parametric Sweep						
Study Settings						
Sweep type: All combinations						
Parameter name		Parameter value list	Parameter unit			
FaultPos (FaultP 🔻		1 3 5 10 20 30 40 50 60 70 80				
T2TFault 🔹		1 3 5 9 13 22 44				
↑ ↓ + 🚎 🔪 📂 🔲 🛄						

Leakage reactance between coil segments: S, C1, C2, C3 and D

Leakage inductances (1-turn basis) between coil segments: S, C1, C2, C3 and D

• These curve are reduced to set of equation by fitting and supplied ad input to MATLAB codes

Simulation Result in ATP:

	Expected [A]	Simulation [A]
Primary (A-ph)	3717.7	3710.29
Secondary (A-ph)	237.0	240.65
Tertiary (A-ph)	3121.6	3001.9
Primary (B-ph)	247.5	251.00
Secondary (B-ph)	644.6	644.22
Tertiary (B-ph)	3121.6	3001.8

<u>Conclusion:</u>

- Accurately estimated the values of leakage reactance for healthy and faulted winding transformer
- Characteristic curve is exported or simplified by fitting the values
- The coefficients are then supplied to developed matlab code to generate library for near-real time
- Enhanced the ATP model for studying the Transformer protection

References

- 1. Rosa, Edward B, Grover, Frederick W, and United States. "Formulas and Tables for the Calculation of Mutual and Self-Inductance". U.S. Dept. of Commerce and Labor, *Bureau of Standards: U.S. Govt. Print. Off. 1912*. Web.
- 2. F. W. Grover, "Additions to the formulas for the calculation of mutual and self-inductance". U.S. Dept. of Commerce, Bureau of Standards: –U.S. Govt. Print. Off. 1919.
- Høidalen, Hans & A Mork, Bruce & Gonzalez-Molina, Francisco & Ishchenko, Dmitry & Chiesa, Nicola. (2009). Implementation and verification of the Hybrid Transformer model in ATPDraw. *Electric Power Systems Research*. 79. 454-459. 10.1016/j.epsr.2008.09.003.
- 4. Kulkarni, S. V., and Khaparde, S. A., "Transformer Engineering Design and Practice". New York: Marcel Dekker, Inc., 2004. Print.
- 5. Blume, Louis Frederick et al., "Transformer Engineering; a Treatise on the Theory, Operation, and Application of Transformers". New York: Wiley, 1938. Print.
- 6. E. O. Egorova, Development of the Coil Volume method for time-domain simulation of internal faults in transformers. PhD thesis, Michigan Technological University, Houghton, MI, USA, 2019.
- 7. H. K. Vemprala, "Advancements in time-domain modeling for power system disturbances," Ph.D. dissertation, Michigan Technological University, Houghton, MI, USA, 2019 (In progress).
- 8. Walter Frei, "Exploiting Symmetry to Simplify Magnetic Field Modeling", COMSOL Blog, July 14, 2014, web:<u>https://www.comsol.com/blogs/exploiting-symmetry-simplify-magnetic-field-modeling/</u>

