COMSOL CONFERENCE 2019 BOSTON

MOSFET Channel Engineering and Scaling Study using COMSOL® Multiphysics Simulation Software

Divas Subedi '22 Dr. Deborah A. Fixel

Department of Engineering, Trinity College, Hartford, CT 06106, USA October 3, 2019

Overview

- Structure of MOSFET
- Short Channel effect
- FIBMOS and its Structure
- Methods
- Results
- Conclusion

MOSFET

Fig 1. Structure of an n-type MOSFET

Short Channel Effects

- Threshold instability
- Punchthrough effect.
- Reduced Output resistance
- Hot electron degradation

FIBMOS

Fig 2. Device Structure of FIBMOS

Device Parameters

Table 1. Dimensions and doping densities of the devices

Parameter	FIBMOS	Conventional
Substrate doping	$5 \times 10^{16} \text{ cm}^{-3}$	$5 \times 10^{16} \text{ cm}^{-3}$
Source Drain doping peak	$7 \times 10^{20} \text{ cm}^{-3}$	$7 \times 10^{20} \text{ cm}^{-3}$
P+ Region doping peak	$1 \times 10^{19} \text{ cm}^{-3}$	
Oxide Thickness	15 nm	15 nm
Gate Width	20 µm	20 µm
Junction depth	130 nm	130 nm

Constant Field Scaling

Table 2. Constant field scaling

Parameter	Scaling factor $(k < 1)$
Channel length	k
Source/Drain extension	k
Junction Depth	k
Gate Oxide Thickness	k
Doping Density	1/k
FIB implant width	1

METHODS

- Semiconductor Module was used in order to design the devices and perform study on them
- 350-nm devices were designed and were scaled further down by factor of k = {0.7, 0.5, 0.35} that is channel length of {245-nm, 175-nm, 122.5-nm} using parametric sweep
- Two different user-defined mesh were made according to needs of the simulation
- Mobility Model and Recombination Model were implemented to increase fidelity of the physics
- Solver settings were changed accordingly to facilitate the models used and to converge to a solution
- Fermi-Dirac Distribution of particle was implemented

Equation Used

• Poisson Equation

$$\nabla \cdot (-\epsilon_0 \epsilon_r \nabla V) = q(p - n + N_d^+ - N_a^-)$$

Continuity Equation

$$\frac{\partial n}{\partial t} = \frac{1}{q} (\boldsymbol{\nabla} \cdot \boldsymbol{J}_{\boldsymbol{n}}) - U_{n}$$
$$\frac{\partial p}{\partial t} = -\frac{1}{q} (\boldsymbol{\nabla} \cdot \boldsymbol{J}_{\boldsymbol{p}}) - U_{p}$$

• Energy-Transport Model

$$J_{n} = qn\mu_{n}\nabla E_{c} + \mu_{n}k_{B}TG\left(\frac{n}{N_{c}}\right)\nabla n + qnD_{n,th}\nabla \ln(T)$$
$$J_{p} = qp\mu_{p}\nabla E_{v} + \mu_{p}k_{B}TG\left(\frac{p}{N_{v}}\right)\nabla p - qpD_{p,th}\nabla \ln(T)$$

Mesh

24592 domain elements 398 boundary elements

25910 domain elements 1068 boundary elements

Fig 3. User-defined meshes

Doping Profile

Fig 4. Doping Profile of (a) MOSFET and (b) FIBMOS device

Transfer Characteristics

Fig 5. Transfer Characteristics of (a) MOSFET and (b) FIBMOS device

Subthreshold Conduction

Fig 6. Subthreshold current of MOSFET (dashed) and FIBMOS device (solid)

Conduction band energy level

Fig 7. Conduction band energy level of (a) MOSFET and (b) FIBMOS device

Output Characteristics

Fig 8. Output Characteristics of MOSFET (red) and FIBMOS device (blue)

Lateral Electrical Field

Fig 9. Lateral Electrical Field inside the channel of MOSFET (red) and FIBMOS device (blue)

Electron Concentration inside the channel

Fig 10. Electron Concentration inside the channel of MOSFFET (red) and FIBMOS device (blue)

Conclusion

- Threshold stability
- Greater resistance against Punchthrough effect
- Higher Output resistance
- Greater resistance against Hot electron degradation
- Hence, FIBMOS shows characteristics closer to ideal transistors

References

- Chih-Chieh Shen, J. Murguia, N. Goldsman, M. Peckerar, J. Melngailis, and D.A. Antoniadis. Use of focused-ion-beam and modeling to optimize submicron MOSFET
- Donald A. Neamen. Semiconductor Physics And Devices: Basic Principles. McGraw-Hill, 2012.
- J Kang, X He, D Vasileska, and D K Schroder. Optimization of FIBMOS Through 2d Silvaco ATLAS and 2d Monte Carlo Particle-based. VLSI Design, 13(1-4):251–256, 2001.
- Kevin Kramer and W. Nicholas G. Hitchon. Semiconductor Devices: A Simulation Approach. Prentice Hall PTR, 1997.

THANK YOU Question?

Appendix

Mobility Model

- Arora Mobility Model
 - Phonon scattering and Impurity scattering
- Fletcher Mobility Model
 - Carrier-carrier scattering
- Lombardi Mobility Model
 - Surface scattering (Perpendicular Electrical Field)
- Caughey-Thomas Mobility Model
 - High Field Velocity Scattering (Lateral Electrical Field)

$$\mu_{total} = \mu_E(\mu_S(\mu_C(\mu_{LI})))$$

Figure 5. Output Characteristics of FIBMOS device and conventional MOSFET for channel length of (a) 350-nm, (b) 245-nm, (c) 175-nm, and (d) 122.5-nm

Figure 8. Electron concentration at surface near gate of FIBMOS device and conventional MOSFET for channel length of (a) 350-nm, (b) 245-nm, (c) 175-nm, and (d) 122.5-nm

Figure 9. Lateral Electrical Field at surface near gate of FIBMOS device and conventional MOSFET for channel length of (a) 350-nm, (b) 245-nm, (c) 175-nm, and (d) 122.5-nm

$$f(E) = \frac{1}{1 + exp(\frac{E - E_F}{kT})}$$

$$G(\boldsymbol{\alpha}) = \frac{\boldsymbol{\alpha}}{F_{-\frac{1}{2}}(F_{\frac{1}{2}}^{-1}(\boldsymbol{\alpha}))}$$

$$F_j(x)=rac{1}{\Gamma(j+1)}\int_0^\infty rac{t^j}{e^{t-x}+1}\,dt,\qquad (j>-1)$$