

COMSOL CONFERENCE 2019 BOSTON

Gold-Coated Fumed Silica Monolayer for Efficient Large-Scale SERS Substrates with High Density Nanogaps

NanoPhotonics

Pakhawat Insuwan^{1,2}, Pruet Kalasuwan^{1,2}, Paphavee van Dommelen^{1,2} and Chalongrat Daengngam^{1,2,*}

October 4th, 2019

¹Department of Physics, Faculty of Science, Prince of Songkla University, Songkhla, Thailand, 90110 ²Thailand Center of Excellence in Physics, Commission on Higher Education, Bangkok, Thailand, 10400 Method

Surface enhance Raman spectroscopy

China,(Jan,2019)Global and China Surface Enhanced Raman Spectroscopy (SERS) Market Research by Company, Type & Application 2013-2025,retrive from https://marketandresearch.biz

The importance of nanogaps

nanotips

nanogap

 $|E^4|$

×10⁵

2.5

1.5

0.5

-3

з

2

4 nm

Theory

The importance of fumed silica

Fumed silica becomes SERS template for gold deposition

Introduction	Theory	Method	Results	Conclusions	Acknowledgements
--------------	--------	--------	---------	-------------	------------------

Objective

To investigate LSPR properties of SERS substrate, formed by highly porous silica-gold core-shell network structures

study the resulting plasmonic resonance behaviors, as well as the electric field enhancement factor and absorptance.

Effect of geometric parameters are including silica particle size, gold thickness and particle density

Introduction	Theory	Method	Results	Conclusions	Acknowledgements
--------------	--------	--------	---------	-------------	------------------

Maxell's wave equation

Solve for E

$$\nabla \times \mu_r^{-1} (\nabla \times \mathbf{E}) - k_0^2 \left(\epsilon_r - \frac{j\sigma}{\omega \epsilon_0} \right) \mathbf{E} = 0,$$

 $\sigma: electrical \ conductivity$ $\mu_r: relative \ permeability$ $\epsilon_r: relative \ permittivity$

$$n = \sqrt{\epsilon_r \mu_r}; \mu_r \approx 1$$
$$\tilde{\epsilon}_r = \epsilon_r - \frac{j\sigma}{\omega\epsilon_0}$$

$$\boldsymbol{E}(x, y, z) = \widetilde{\boldsymbol{E}}(x, y) e^{-jk_z z}$$

COMSOL MULTIPHYSICS

8

Choose the module

1.Optics 2.Wave optics 3.Emw, frequency domain 11

 $\nabla \times \mu_r^{-1} (\nabla \times \mathbf{E}) - k_0^2 \left(\epsilon_r - \frac{j\sigma}{\omega \epsilon_0} \right) \mathbf{E} = 0$

Define parameters

Parameters	Expression	Description
Lambda	Sweep 300-1500 nm	Incidents lambda of electromagnetic wave
n _{air}	1	Refractive index of air
n _{silica}	Equation	Refractive index of silica
n _{gold}	Build-in parameter	Refractive index of gold
P _{inc}	2.6544E-9 W	Incidents power

Refractive index of silica

Refractive index of gold

	0.000100012	0 40 70 40 6 12	0.005450412	Wavelength	Refractive index
$n_{-} = 1 - 1$	$- 0.6961663\lambda^2$	0.4079426λ ²	$0.8974794\lambda^2$	7.80E-07	4.61086642
$n_2 = 1 - 1$	$\lambda^2 - 0.0684043^2$	$\lambda^2 - 0.1162414^2$	$\lambda^2 - 9.896161^2$	7.85E-07	4.65225188
				7.90E-07	4.69352994
				7.95E-07	4.73470422
C. Z	. Tan. Determination of refractive	index of silica class for infrared	wavelengths by IR	8.00E-07	4.77577819

C. Z. Tan. Determination of refractive index of silica glass for infrared wavelengths by IR spectroscopy, *J. Non-Cryst. Solids* **223**, 158-163 (1998)

ntroduction	Theory	Method	Results	Conclusions	Acknowledgements	13
				01	Absorption spec with various silie	ctra of SERS substrate ca primary particles sizes.
0.9 0.8 0.7 - 0.0 - 0.0		silica particle si 10 nr 12 nr 14 nr 16 nr 20 nr	Ze 140 160 200 180 180 180 180 180 180 180 180 180 1	45 50 50 60	Log E ⁴ m 20 3 3 5 2 1 3 2 1 1 3 2 1 1 3 2 1 1 3 2 1 1 3 2 1 1 3 2 1 1 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1	
	400 600 800 Waveler	1000 1200 1400 ight (nm)	Fi Pa Go	ll factor = 0.3 articles diamete old thickness =	F er = 10 nm P : 3 nm G	ill factor = 0.3 articles diameter = 20 nm fold thickness = 3 nm

Fill factor = 0.3Particles diameter = 18 nm Gold thickness = 1 nm

Fill factor = 0.3Particles diameter = 18 nm Gold thickness = 5 nm

14

 $\log|E^4|$

Absorption spectra of SERS substrate with various packing density of silica particles.

Fill factor = 0.1 Particles diameter = 18 nm Gold thickness = 3 nm

Fill factor = 0.5 Particles diameter = 18 nm Gold thickness = 3 nm

The simulation result shows $|E|^4$ distribution on a SERS substrate, excited by a vertical wave incident.

Conclusion

- COMSOL® program can be use to simulate electric field and optical spectrum of complex plasmonic structure.
- The numerical results confirm that most of the geometry structures support strong LSPR in NIR spectrum range
- The optimized structure involves primary silica diameter 18 nm, gold thickness 3 nm, packing density 0.3, which yields enhancement up to 10⁷

Future work

□ Need to compare the results with the experiment.

Introduction	Theory	Method	Results	Conclusions	Acknowledgements
--------------	--------	--------	---------	-------------	------------------

Acknowledgements

- Assist. Prof. Dr.Chalongrat Daengngam Ph.D
- NanoPhotonics Research Group
- Development and Promotion of Science and Technology Talents Project (DPST)

19

- Department of Physics, Faculty of Science, Prince of Songkhla University
- COMSOL ® Multiphysics

Thank You

For your attention