
Mathematica® and COMSOL Multiphysics®:
A Powerful Workflow for Creating

General FE Formulations

Francesco Costanzo and Priyanka Patki

Center for Neural Engineering

Penn State, University Park, USA

2019 COMSOL Conference
Boston, MA

Octtober 2–4, 2019

Costanzo | Patki Mathematica & COMSOL Boston, 3 October 2019 1 / 14

Acknowledgments

Collaborators

� Ravi T. Kedarasetti, Ph.D. Candidate, Center for Neural Engineering, Penn State

� Nitesh Nama, former Ph.D. student now a postdoc at the University of Michigan.

� Eric Abercrombie, recently graduated M.S. student

We acknowledge partial funding from

� US National Science Foundation: CBET, Engineering of Biomedical Systems
Program (EBMS), Grant #1705854.

Costanzo | Patki Mathematica & COMSOL Boston, 3 October 2019 2 / 14

Motivation

� Our workplace: Penn State Center for Neural Engineering

� Current projects:

I Microacoustofluidic mixers/cell manipulation
I Metabolite exchange in brain
I Acute stroke: blood clotting/lysis, embolization, clot removal
I Biodegradation of tissue engineered scaffolds

� Math/computation interests:

I Mixture theory
I Traditional and complex fluid flow with fluid-structure interaction and stabilization
I large-strain poroelasticity
I Reaction-diffusion-advection

� Need: to quickly develop accurate and reliable multiphysics numerical schemes

� Preferred tool: the Mathematics Interfaces in COMSOL Multiphysics — we can focus on
FE formulations and stabilization and spend less time in low-level programming

� Main obstacle: typying very complex formulations into COMSOL without typographical
errors.

� Solution: We leaned on Wolfram’s Mathematica — combining Mathematica and
COMSOL opened the door to significant progress for us and this presentation is meant to
tell you about our experience.

Costanzo | Patki Mathematica & COMSOL Boston, 3 October 2019 3 / 14

VMM-Stabilized ALE Formulation of Darcy-Brinkman Flow
in Axisymmetric Geometry
An example

arterial wall

PVS

parenchyma
astrocytic end-feet
A B

Strong form:
εµ

κ
(v − vm) +∇p −∇ · [2µ(∇v)sym]− b︸ ︷︷ ︸

r: residual

= 0 and ∇ · v − q = 0 in Dλ

Stabilized weak form with companion fine-scale problem:(
ṽ,
εµ

κ
(v − vm)− b

)
+ (∇ṽ,σ) + (p̃,∇ · v − q) + (φ, τ r) = 0, σ = −pI + 2µ(∇v)sym,

φ = −
εµ

κ
ṽ +∇ · [p̃I + 2µ(∇ṽ)sym],

(
τ̃wi ,

εµ

κ
wi − wi

)
+ ([∇(τ̃wi)]sym, 2µ[∇(τwi)]sym) = 0,

with w1 = −er and w2 = −ez . Boundary conditions: v given at the inner and outer radii;
λ-periodicity; zero-pressure average. The τ problem is posed in a space of bubble functions.

These equations hold over the (deformed) physical domain: They must be pulled back to the

computational domain — remapping second order differential operators: chain rule galore.

Costanzo | Patki Mathematica & COMSOL Boston, 3 October 2019 4 / 14

VMM-Stabilized ALE Formulation of Darcy-Brinkman Flow
in Axisymmetric Geometry
Convergence Study with the Method of Manufactured Solutions

� Figures: Method of Manufactured Solutions, radial
velocity component.

� Application interest: flow of interstitial fluid in the
paravascular space of the brain.

� ALE: Arbitrary Lagrangian–Eulerian

I Physical domain 6= computational domain
I Eqs. are complex on the solution’s domain
I Eqs. are “simple” on the physical domain

� VMM: Virtual Multiscale Method
[for Darcy-Brinkman flow, see A. Masud, IJNMF, 54(2007), pp. 665–681]

� VMM “Cost”

I Needs the residual (2nd order derivatives).
I Needs an auxiliary (stabilization) field τ .

� VMM “Benefits”

I Strongly consistent
I Effective in convection-dominated problems
I Computing τ is transparent (cf. SUP/G)
I Lessens the restrictions of the inf-sup condition

vr in the computational domain

vr in the physical domain

Costanzo | Patki Mathematica & COMSOL Boston, 3 October 2019 5 / 14

Example: Convergence Study

� FE Grid: squares with side of length Mh.

� Parametric sweep over a range of values for Mh.

Q1 elements for p and v.
Cubic bubbles for τ . 8 cycles of uniform
refinement. Maximum number of dofs.:
1,577,475. Duration: 105 s on my MacBook
Pro.

Q2 elements for p and v.
Cubic bubbles for τ . 6 cycles of uniform
refinement. Maximum number of dofs.:
395,523. Duration: 25 s, again on my
MacBook Pro.

Costanzo | Patki Mathematica & COMSOL Boston, 3 October 2019 6 / 14

How Were the Calculations Done?
COMSOL’s powerful input syntax

� COMSOL provides
Mathematics Interfaces

� Interfaces we typically use:
I Weak Form PDE
I ODE and DAE

� Our “standard approach”:
I Component Node: add a

physics using a Mathematics
Interface — (typically) this
instantiates a FE field

I Definitions sub-node: add
Variables Table(s): it is
here that we define the
formulation expressions

I We invoke one such
definitions in the appropriate
equation interface.

� We do NOT type definitions:
we import them from text
file(s)

� We create the text files using
Mathematica

Costanzo | Patki Mathematica & COMSOL Boston, 3 October 2019 7 / 14

Quick Reminder about COMSOL’s Syntax

� Default coordinate system in COMSOL:

I Cartesian: (x , y , z)
I Cylindrical: (r , phi , z)

� COMSOL allows a user to label an FE field as a whole and to independently
name the field’s components. For example, let “vector u” be the label for a
vector-valued field in 3D. We can then name the components (first, second , third).

I If, say, we are using (x , y , z) for the coordinates, it may make more sense to
name the vector components (ux , uy , uz) — again, these are just names.

� Once names are given, COMSOL has an intuitive syntax to refer to derivatives:

∂uy

∂x
→ uyx ,

∂3ux

∂y∂z2
→ uxyzz ,

∂uz

∂t
→ uzt, etc.

� Note: time derivatives must go last.

� The test functions associated to a particular field are invoked by simply setting the
field in question as the argument of the test() operator.

� So, what does the input for our VMM-stablized Example look like? . . . Let’s
consider a very simple example first . . .

Costanzo | Patki Mathematica & COMSOL Boston, 3 October 2019 8 / 14

Input for 3D Elastodynamics

IWC

(-bx+rho*uxtt)*test(ux)+(2*mu*uxx+lambda*(uxx+uyy+uzz))*test(uxx)+(-by+

rho*uytt)*test(uy)+mu*(uxy+uyx)*(test(uxy)+test(uyx))+(2*mu*uyy+lambda*(

uxx+uyy+uzz))*test(uyy)+(-bz+rho*uztt)*test(uz)+mu*(uxz+uzx)*(test(uxz)+

test(uzx))+mu*(uyz+uzy)*(test(uyz)+test(uzy))+(2*mu*uzz+lambda*(uxx+uyy+

uzz))*test(uzz)

BWC -(sx*test(ux))-sy*test(uy)-sz*test(uz)

Energy

(lambda*(uxx+uyy+uzz)^2+mu*(2*uxx^2+(uxy+uyx)^2+2*uyy^2+(uxz+uzx)^2+(uyz

+uzy)^2+2*uzz^2))/2.

exx uxx

exy (uxy+uyx)/2.

exz (uxz+uzx)/2.

eyx (uxy+uyx)/2.

eyy uyy

eyz (uyz+uzy)/2.

ezx (uxz+uzx)/2.

ezy (uyz+uzy)/2.

ezz uzz

sxx (exx+eyy+ezz)*lambda+2*exx*mu

sxy 2*exy*mu

sxz 2*exz*mu

syx 2*eyx*mu

syy (exx+eyy+ezz)*lambda+2*eyy*mu

syz 2*eyz*mu

szx 2*ezx*mu

szy 2*ezy*mu

szz (exx+eyy+ezz)*lambda+2*ezz*mu

� Define a single physics with a
vector-valued displacement field u.

� Components of u: (ux , uy , uz).

� The weak form of the linear elastic
BVP is

(ũ, ∂ttu− b) + ([∇ũ]sym,σ)

− (ũ, s)ΓN = 0

σ = 2µε+ λ(tr ε)I

ε = (∇u)sym

λ and µ are the Lamè elastic
constants (moduli).

� Boundary conditions: u = u0 on
ΓD and σn = s on ΓN , with ΓD

and ΓN the Dirichlet and the
Neumann parts of the boundary.

Costanzo | Patki Mathematica & COMSOL Boston, 3 October 2019 9 / 14

Input for the VMM-Stabilized Porous Flow Example
Actually, only one term . . .

Definition of the stabilization term:

StabilizationIWC

J*((taurr*(-br+pr*rer+(2*muB*vr)/er^2+(epsilon*muD*vr)/kappa+pz*zer-(2*

muB*(rer*vrr+vrz*zer))/er-muB*(2*rerer*vrr+rezez*vrr+2*rer^2*vrrr+rez^2*

vrrr+rerez*vzr+rer*rez*vzrr+4*rer*vrrz*zer+rez*vzrz*zer+2*vrzz*zer^2+2*

vrz*zerer+vzz*zerez+2*rez*vrrz*zez+rer*vzrz*zez+vzzz*zer*zez+vrzz*zez^2+

vrz*zezez))+taurz*(-bz+pr*rez+(epsilon*muD*(c+vz))/kappa+pz*zez-(muB*(

rez*vrr+rer*vzr+vzz*zer+vrz*zez))/er-muB*(rerez*vrr+rerer*vzr+rer^2*vzrr

+rez*vrrz*zer+vzzz*zer^2+vzz*zerer+vrz*zerez+vrzz*zer*zez+rer*(rez*vrrr+

2*vzrz*zer+vrrz*zez))-2*muB*(rezez*vzr+rez^2*vzrr+2*rez*vzrz*zez+vzzz*

zez^2+vzz*zezez)))*(rer*test(pr)+zer*test(pz)-(epsilon*muD*test(vr))/

kappa+(2*muB*(-test(vr)+er*rer*test(vrr)+er*zer*test(vrz)))/er^2+2*muB*(

rerer*test(vrr)+rer^2*test(vrrr)+2*rer*zer*test(vrrz)+zerer*test(vrz)+

zer^2*test(vrzz))+muB*(rezez*test(vrr)+rez^2*test(vrrr)+2*rez*zez*test(

vrrz)+zezez*test(vrz)+zez^2*test(vrzz)+rerez*test(vzr)+rer*rez*test(vzrr

)+rez*zer*test(vzrz)+rer*zez*test(vzrz)+zerez*test(vzz)+zer*zez*test(

vzzz)))+(tauzr*(-br+pr*rer+(2*muB*vr)/er^2+(epsilon*muD*vr)/kappa+pz*zer

-(2*muB*(rer*vrr+vrz*zer))/er-muB*(2*rerer*vrr+rezez*vrr+2*rer^2*vrrr+

rez^2*vrrr+rerez*vzr+rer*rez*vzrr+4*rer*vrrz*zer+rez*vzrz*zer+2*vrzz*zer

^2+2*vrz*zerer+vzz*zerez+2*rez*vrrz*zez+rer*vzrz*zez+vzzz*zer*zez+vrzz*

zez^2+vrz*zezez))+tauzz*(-bz+pr*rez+(epsilon*muD*(c+vz))/kappa+pz*zez-(

muB*(rez*vrr+rer*vzr+vzz*zer+vrz*zez))/er-muB*(rerez*vrr+rerer*vzr+rer^2

*vzrr+rez*vrrz*zer+vzzz*zer^2+vzz*zerer+vrz*zerez+vrzz*zer*zez+rer*(rez*

vrrr+2*vzrz*zer+vrrz*zez))-2*muB*(rezez*vzr+rez^2*vzrr+2*rez*vzrz*zez+

vzzz*zez^2+vzz*zezez)))*(rez*test(pr)+zez*test(pz)-(epsilon*muD*test(vz)

)/kappa+(muB*(rez*test(vrr)+zez*test(vrz)+rer*test(vzr)+zer*test(vzz)))/

er+muB*(rerez*test(vrr)+rer*rez*test(vrrr)+rez*zer*test(vrrz)+rer*zez*

test(vrrz)+zerez*test(vrz)+zer*zez*test(vrzz)+rerer*test(vzr)+rer^2*test

(vzrr)+2*rer*zer*test(vzrz)+zerer*test(vzz)+zer^2*test(vzzz))+2*muB*(

rezez*test(vzr)+rez^2*test(vzrr)+2*rez*zez*test(vzrz)+zezez*test(vzz)+

zez^2*test(vzzz))))

I did not type this, Mathematica did!

� The whole formulation is
contained in a single text
file with 4776 characters,
forming 1045 “words”, over
30 lines — the line to the
left has 2007 characters

� This is not the most
complex input we asked
COMSOL to read

� The COMSOL parser is very
resilient

� The true limitation is on the
part of the user when
he/she might need to debug
errors

Let’s see how this is created with

Mathematica . . .

Costanzo | Patki Mathematica & COMSOL Boston, 3 October 2019 10 / 14

Mathematica COMSOL Support
A Mathematica Package for FE Formulations in COMSOL

For the 3D elastodynamics example, the “reduced coordinates” are {x, y , z, t}, and no other

coordinate set is needed.

Costanzo | Patki Mathematica & COMSOL Boston, 3 October 2019 11 / 14

Mathematica COMSOL Support Package
Key features

� Our Mathematica package allows one to mimic the “paper and pencil” equations

� We stuck to using Mathematica’s native differential operators:

I ALE formulations are automatically built via the chain rule!
I No limit to the order of differentiation: determination of residuals for in any

coordinate system

� To use Mathematica’s native differential operators, the relevant fields must be
written as functions of the coordinates: This is not allowed in COMSOL.
Therefore, we created a function called Compactify[] to convert Mathematica
expressions into COMSOL-compatible equivalents.

� When solving for the gradients of an inverse ALE Map we rely on the
Mathematica’s native Solve[] function.

� We created a test[] operator to imitate the required syntax in COMSOL.

� We created a function called COMSOLForm[] as an extension of Mathematica’s
native FortranForm[] to translate Mathematica’s expressions into compatible
COMSOL definitions.

Costanzo | Patki Mathematica & COMSOL Boston, 3 October 2019 12 / 14

Package Function List

Here is the full list of the functions in our COMSOLSupport Package

� IP[*,*]: generalized inner product

� Sym[*]: symmetrization of 2nd order tensors

� COMSOLProblemSettings[---]: Initialization of problem type, dimension, coordinate system, naming
convention

� test[*]: a linear operator obeying the product rule, commuting with differential operators

� DInt[*]: a mere wrapper standing for “domain integration”; must be defined in COMSOL

� Tensorify[*,*,*]: creates an expression representing a tensor of specified order

� Functionify[*,*]: turns a symbol into a function of specified arguments

� Fieldfy[*,*]: an alias for Functionify[*,*]

� Testify[*]: alternative to test[*] treating test functions as functions

� Compactify[*,*]: transform expression functions of specified coordinates into COMSOL-compatible
expressions.

� ClearOutputFiles[*]: simple file initialization

� COMSOLExport[*,*]: writes COMSOL-compatible expressions to a textfile

� COMSOLForm[*]: turns a Mathematica expression into one interpretable by the COMSOL parser

� COMSOLRule[*,*]: defines the pairs to appear in a COMSOL definition table.

Costanzo | Patki Mathematica & COMSOL Boston, 3 October 2019 13 / 14

Summary

� Research support mission: rapid deployment of schemes not normally
available in ready-made computational packages

� COMSOL Multiphysics is an ideal tool in creating new FE formulations

� Main stumbling block: the expressions in multiphysics simulations are often
very hard to hand-type correctly

� We were able to overcome our difficulties by manipulating complex
formulations using Mathematica

� We formalized our workflow into a Mathematica Package that has proven to
be very versatile and (relatively) easy to use even in the most complex
formulations we have worked on so far.

� We will make our Mathematica package and accompanying examples
available as a Git repository hosted on GitHub

� Please contact me (Francesco Costanzo) at fxc8@psu.edu is you are
interested

Any questions?

Costanzo | Patki Mathematica & COMSOL Boston, 3 October 2019 14 / 14

