
Simulated Innovation – Virtual Product Development

Stephen Farmer PhD

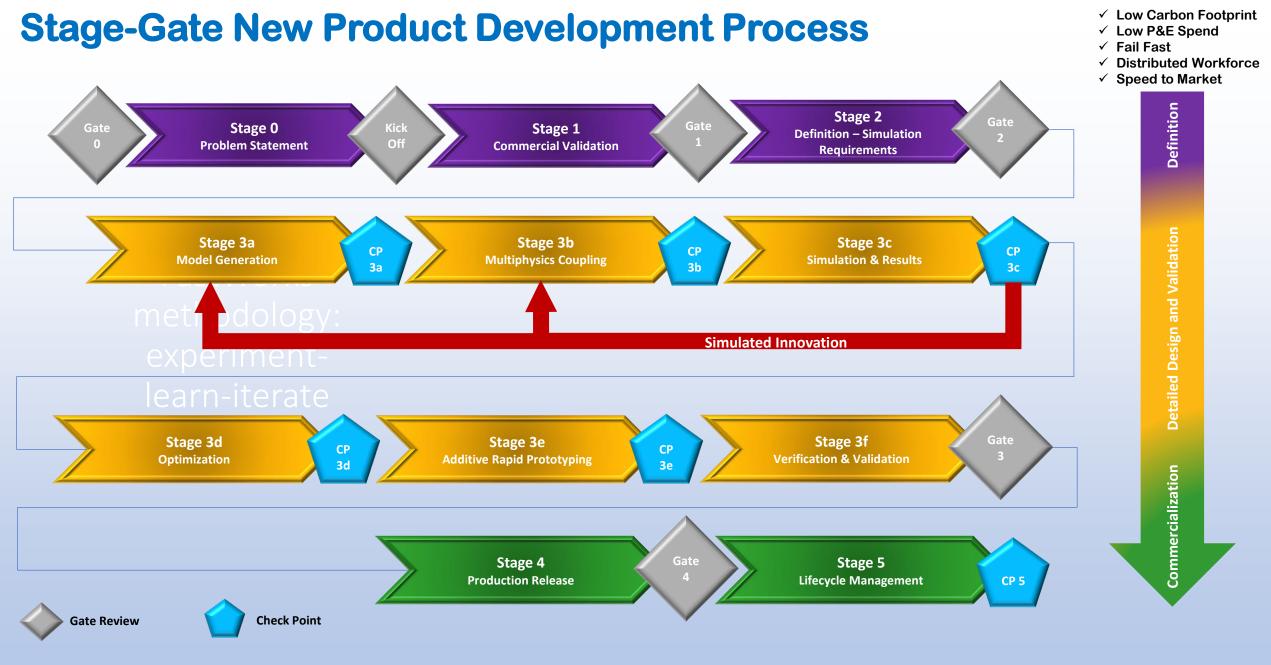
COMSOL Multiphysics is a great tool for in-depth simulation and analysis. The opportunities are only limited by our imagination and skill set.

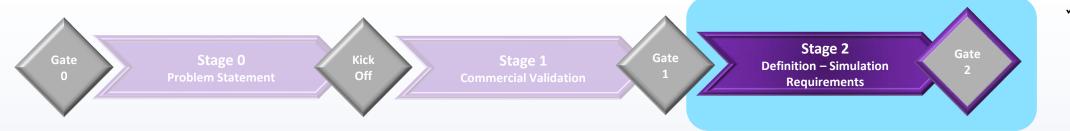
Technology enablers such as Cloud infrastructure, on-demand machine learning, scalable storage, and access to high-performance computing platforms provides an opportunity to embed multiphysics simulation into enterprise scale product development programs.

Simulated Innovation is a proposal to integrate multiphysics into a widely accepted stagegate, new product development (NPD) process.

The process provides an opportunity to develop new products in a completely virtual path that:

- ✓ Leaves a very low carbon footprint
- ✓ Requires low P&E spend
- $\checkmark~$ Is available for a distributed workforce
- ✓ Reduces the development cycle for new product speed to market
- Provides expanded design space to evaluate new ideas, fail fast and quickly iterate revised solutions




Virtual Product Development

Stephen Farmer PhD

Stephen Farmer PhD

Definition and Simulation Requirements

Stage 2

- ✓ Critical activity to transform physical world into virtual environment
- Requires close collaboration between the physical world subject matter experts and simulation experts
- ✓ Define variables and constraints such as:
 - Material properties
 - Geometry interfaces
 - Boundary conditions
 - Initial and operating conditions
 - Failure modes
 - Meshing strategy
 - Domain-sub-domain strategy

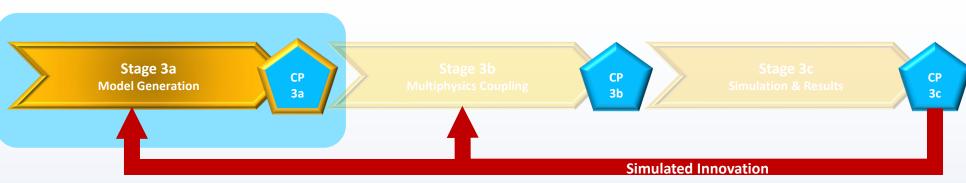
Stage 2

- ✓ Decide on sources for properties:
 - COMSOL materials library or user defined
 - Import CAD geometry, import mesh data, use LiveLink, or draw in COMSOL
- ✓ Conduct a Product Requirement Review (PRR) and Conceptual Design Review (CDR)

Gate Review 2

- \checkmark Decide if still a viable project and approval to continue
- ✓ Set project milestones with resource allocation
- ✓ Evaluate gap analysis between requirements and COMSOL capabilities
- ✓ Update Design Review Checklist

Take time to fully understand the physical environment you are modeling


Stephen Farmer PhD

Simulated Innovation

✓ Low Carbon Footprint

- ✓ Low P&E Spend
- ✓ Fail Fast
 - / Distributed Workforce
- ✓ Speed to Market

Model Generation

Stage 3a

- ✓ Solve all equations as one fully coupled system
- ✓ Determine physics interfaces:
 - Solid mechanics
 - Acoustics
 - Fluid flow
 - Heat transfer
 - Chemical species transport
 - Electromagnetics
- ✓ Consider using PDE user interface where custom models can be created in mathematical terms
- ✓ Select study types for your model:
 - Time-dependent
 - Stationary

Stage 3a

- ✓ More study types are:
 - Time dependent
 - Time discrete
 - Frequency to time/time to frequency FFT
 - Eingenvalue
 - Eigenfrequency
- Import or draw geometry in COMSOL software using decided method

Control Point 3a

✓ Conduct a Preliminary Model Review (PRR) with an extended team of simulation experts and consultants

Goal is to solve all equations as one fully coupled system

Stephen Farmer PhD

Simulated Innovation

✓ Low Carbon Footprint

Distributed Workforce

Low P&E Spend

✓ Speed to Market

Fail Fast

Multiphysics Coupling

- ✓ Low P&E Spend
- ✓ Fail Fast

CP

- ✓ Distributed Workforce
- ✓ Speed to Market

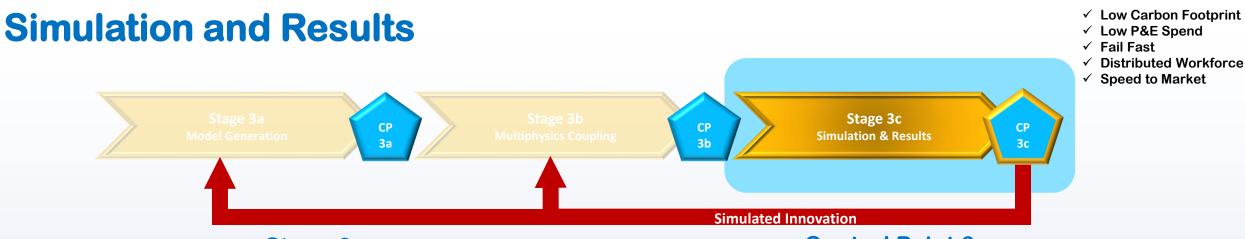
Stage 3b

- COMSOL physics interfaces typically use the finite element method to solve underlying partial differential equations
- ✓ FEM works by discretizing model domains into small, simplified, domains called elements
- ✓ The solution to these equations approximates the solution to the PDE
- Estimate the degrees of freedom (DOF): the number of nodes multiplied by the number of dependent variables
- ✓ The number of DOFs is related to the amount of memory a model will need
- ✓ DOF will be reported in the COMSOL GUI

Stage 3b

- ✓ Several possible approaches to reduce memory requirements:
 - Exploit symmetry

Simulated Innovation


- Simplify your problem
- Use submodeling
- Use a different mesh
- Use a lower discretization order
- Use a segregated solver that is not fully coupled

Control Point 3b

✓ Conduct a Detailed Model Review (DMR) with an extended team of simulation experts and consultants

Focus on how to minimize memory usage

Stephen Farmer PhD

Stage 3c

- Confirm that the appropriate solvers are selected for the study steps
- Run the simulation and focus on any error messages or warnings
- ✓ Convergence errors (common) may require a repeat of Stage 3b
- ✓ Evaluate results:
 - Datasets
 - Derived values
 - Evaluation groups
 - Plot groups
 - Tables
- ✓ Use COMSOL's great report generation feature

Control Point 3c

- ✓ Conduct Preliminary Design Review (PDR) to ensure compliance with product requirements
- ✓ Create and review Product Design FMEA (DFMEA) to be reviewed and updated during subsequent steps
- ✓ CP3c is a decision point where development moves into Stage 3d (Optimization) or reverts to Stage 3b (Multiphysics Coupling)/Stage 3a (Model Generation)
- ✓ The point where you move back depends on how the results vary from expected results and requirements
- ✓ Include the physical experts (product and applications Engineers) in the decision to move forward or back in the process

Make decision to move into Optimization or rework the simulation

Stephen Farmer PhD

Coptimization Low Carbon Footprint Low P&E Spend Fail Fast Distributed Workforce Speed to Market

Stage 3d

- ✓ Optimization is a type of solver that typically requires the COMSOL Optimization Module
- ✓ Dimensional optimization involves defining design variables that can be directly translated to manufacturability
 - Examples include hole sizes, length, width and height of structural members
 - Derivative free methods such as bound optimization and constraint optimization are typically used
- Shape optimization is a more free-form alteration of the object without over-constraining design
 - Gradient based methods are preferred

Stage 3d

- Topology optimization treats the distribution of material as a design variable and inserts or removes structures to improve function
 - Gradient based optimization is practical due to the high number of design variables
- ✓ Steps include identifying the objective function that defines the system and defining a set of constraints, bounds and operating conditions

Control Point 3d

 ✓ Conduct a Detailed Design Review (DDR) of product design and related simulations to ensure compliance to product requirements

Optimize by changing variables while still satisfying constraints

Stephen Farmer PhD

Additive Rapid Prototyping

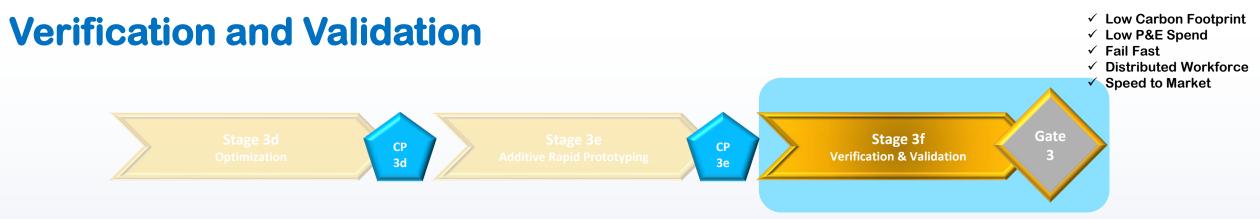
СР 3d

Stage 3e Additive Rapid Prototyping

СР

3e

Stage 3e


- ✓ Export the 3D model of the optimized simulation into a CAD software
- ✓ LiveLink will automatically update the CAD model
- ✓ Build the model from plastic using a common modality such as stereolithography (SLA) to confirm fit and form
- ✓ Continue with rapid prototyping at scale in the qualified metallic material
- Develop a plan to move from rapid prototyping to digital thread manufacturing
- ✓ Consider 3D model optimization using MBD and **MBE** methodologies

Control Point 3e

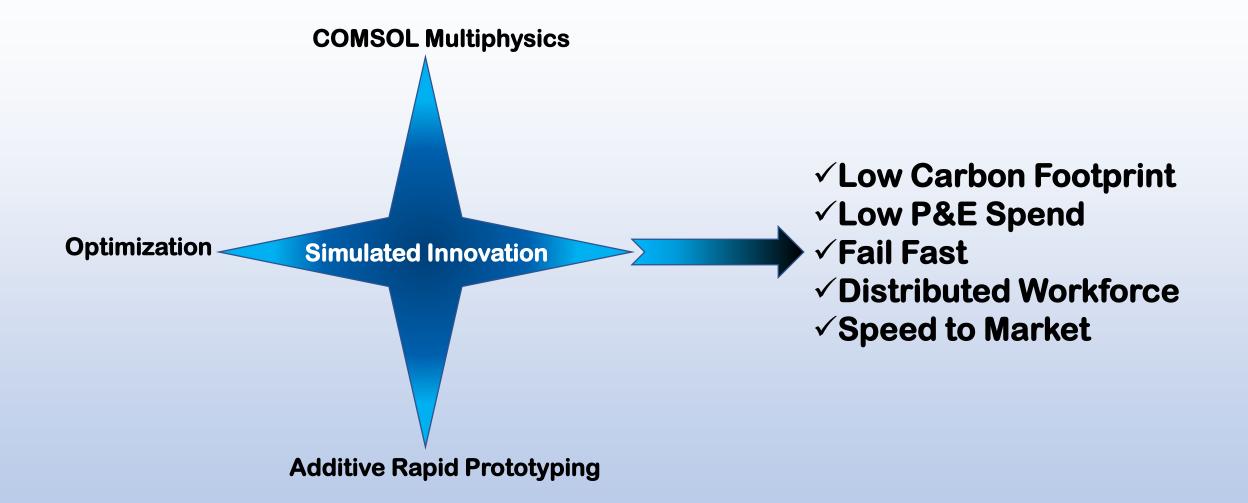
- ✓ Conduct an Additive Manufacturing Review (ADMR) to evaluate dimensional tolerances, critical to quality (CTQ) attributes such as hardness, yield/tensile strength, run-out and surface finishes.
- \checkmark Consider sub-scale component testing to validate any sub-scale models
- ✓ Review any additive material test reports from 3rd party labs

Additive Manufacturing offers an expanded design space

Stephen Farmer PhD

Stage 3f

- Create a plan and complete testing to ensure performance CTQs are achieved
- Conduct a Design Verification Review (DVR) to evaluate prototype/pilot unit test results, verify the product design complies with product requirements, and release designs for full production
- Complete any additional tests including performance, hydro, material, and lifecycle
- Identify customer test installations where products can be monitored in a controlled application


Gate Review 3

- ✓ Complete installation and service validation and documentation
- Collect Engineering and Supply Chain feedback for design for manufacturability options
- ✓ Evaluate customer feedback (VoC)
- ✓ Update application guidelines and quoting limits
- ✓ Initiate internal and external communications/training campaigns
- ✓ Conduct Approval to Quote (ATQ) authorizing Application Engineering, Marketing and Sales to begin the market introduction process
- ✓ Close program and move to lifecycle management (Stage 4-5)

Complete V&V testing and begin commercial engagement

Stephen Farmer PhD

Simulated Innovation – Virtual Product Development

Stephen Farmer PhD