See How Multiphysics Simulation Is Used in Research and Development
Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2024 Collection
Soil’s electromagnetic properties adversely affect the performance of electromagnetic induction (EMI) sensors and if conditions are severe enough, render them useless. A simple circuit model is often used to express the electromagnetic induction response of a target analytically. This ... Read More
Accurate thermo-physical properties of materials are valuable for both scientific research and industrial applications. For high temperature liquid materials, two issues exclude traditional methods: elevated reactivity of test material and experimental apparatus, uncontrolled heat ... Read More
A requirement of the building envelope is to act as environmental separator. Energy is one component that we sometimes wish to control. How can this yield passive benefits such as solar heating? This research focuses on control of thermal radiation energy, and the role windows play ... Read More
Background: Peripheral arterial disease (PAD) is characterized by atherosclerotic blockages of the arteries supplying the lower extremities, which cause a progressive accumulation of ischemic injury to the skeletal muscles of the lower limbs. Despite revascularization treatment ... Read More
This paper reports the structural solid mechanic simulation of a MEMS out-of-plane platform that provides thermal and electrical isolation for a device built on it. When assemble, the platform lifted for approximately 400 μm above the substrate level. A mechanical stress analysis is then ... Read More
Computational tools based on the finite element method have been used extensively to develop solutions for elastic and elastic-plastic fracture mechanics problems. This work uses a small-scale yielding model to compare results developed from COMSOL Multiphysics® with another finite ... Read More
Puffing of biomaterials involves mass, momentum and energy transport along with large volumetric expansion of the material. Development of physics-based models that can describe heat and moisture transport, rapid evaporation and large deformations can help understand the puffing process. ... Read More
In this study, a model of in-situ geothermal energy piles was constructed using COMSOL Multiphysics® software. Geothermal energy piles serve two purposes, first to transfer building load into the subsurface, but also to extract thermal heat from surrounding soils. This is achieved using ... Read More
Although cardiac arrest may be statistically insignificant event financial and more important emotional costs in such cases are quite devastating. In this paper we study the effects of multiple grounding pads. Namely, we believe that by placing multiple pads in the lower abdominal part ... Read More
The design of a magnetic resonance imaging (MRI) RF coil using finite element method-based analysis is an essential part of a multi-year research project at the National Institute of Standards and Technology, Gaithersburg, Maryland, where the goal of the project is to develop a “phantom” ... Read More