See How Multiphysics Simulation Is Used in Research and Development
Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2024 Collection
This paper explores methods of improving the heat transfer coefficient in a crossflow heat exchanger as would be employed in conjunction with an experimental or production microreactor. This derivation of the Cross-Flow Heat Exchanger from the COMSOL Multiphysics® software Model Library ... Read More
This study is to investigate the velocity pattern and the velocity magnitude of the cuttings that is being processed in the process mill as a result of the rotating hammers. The process mill consists of a horizontal cylindrical shell equipped with renewable liners and rotating hammers ... Read More
A 2D transient heat conduction model was created in COMSOL Multiphysics® software to study the performance of photovoltaic-thermal (PVT) water system. The model captures the variation of important environmental and system parameters such as outside temperature, solar irradiation, air ... Read More
2D steady state heat conduction-electric current model was created in COMSOL Multiphysics® software to study the performance of thermoelectric generator-photovoltaic-thermal (TEG-PVT) system. Four different cases were studied in the paper. In case 1, PV cells without concentrator was ... Read More
Chemical engineering students and practitioners need an understanding of fluid flow and heat transfer inside heat exchangers. Because the flow within plate heat exchangers is difficult to visualize, we developed COMSOL Multiphysics® simulations of plate heat exchangers for students to ... Read More
Accurate thermo-physical properties of materials are valuable for both scientific research and industrial applications. For high temperature liquid materials, two issues exclude traditional methods: elevated reactivity of test material and experimental apparatus, uncontrolled heat ... Read More
A requirement of the building envelope is to act as environmental separator. Energy is one component that we sometimes wish to control. How can this yield passive benefits such as solar heating? This research focuses on control of thermal radiation energy, and the role windows play ... Read More
Puffing of biomaterials involves mass, momentum and energy transport along with large volumetric expansion of the material. Development of physics-based models that can describe heat and moisture transport, rapid evaporation and large deformations can help understand the puffing process. ... Read More
In this study, a model of in-situ geothermal energy piles was constructed using COMSOL Multiphysics® software. Geothermal energy piles serve two purposes, first to transfer building load into the subsurface, but also to extract thermal heat from surrounding soils. This is achieved using ... Read More
In response to continued miniaturization and increased multi-functionality of electronic circuits, the number of integrated circuit (IC) packages on the circuit board continues to increase. As a consequence the operating power density increases and significant increases in the operating ... Read More