See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
The adoption of micro- and nanostructured electrodes is a promising technique to improve the performance of Li-ion battery, which increases the electrode surface area and improves the efficiency of ion exchange between the electrode and electrolyte. This performance improvement is ... Read More
This work investigates the frequency-dependent electrothermal behaviors of freestanding doped-silicon heated microcantilever probes operating under the periodic (ac) Joule heating. The transient heat conduction equation for each component (i.e., the low-doped heater region, the high ... Read More
A 2D transient heat conduction model was created in COMSOL Multiphysics® software to study the performance of photovoltaic-thermal (PVT) water system. The model captures the variation of important environmental and system parameters such as outside temperature, solar irradiation, air ... Read More
There has been growing demand for high performance micro sensors capable of detecting nuclear radiations being released from various industries, Nuclear reactors. Radiations emitted from the radioactive materials are invisible and not directly detectable by human senses. Thus it is ... Read More
This is an preliminary attempt to simulate the complicated tunnel induction furnace, used for the heating of the long wire moving at a certain speed to achieve the desired mechanical properties. The furnace consists of 108 numbers of turns, with embedded cooling channel inside to cool ... Read More
Ohmic heating is a volumetric heating technology which can effectively process almost any pumpable fluid with extremely high energy efficiency (>95%). This is particularly useful for very thick fluids, those that burn on to hot surfaces and those with high solids content which would ... Read More
The main topic of this paper is the development of an innovative tool that can be applied in a wide range of complex problems, to simulate, optimize and improve system design especially when dealing with huge numbers of parameters and constraints. The new methodology is obtained by ... Read More
In this paper, we simulated the heating of a work piece by coupling two heat sources. Concentrated solar energy was applied at the bottom of the work piece, which generated a heat flux from the parabolic solar dish concentrator. Subsequently, induction heating was applied, which ... Read More
Double walls provide stability to the structure and separate the controlled indoor climate from the outdoor fluctuating environment. In this study we want to receive more insight in the heat exchange between the walls through the cavity in between, by computer simulations and ... Read More
The Helicon-Injected Inertial Plasma Electrostatic Rocket (HIIPER) is a two-stage electric propulsion system comprising of a helicon plasma source and an inertial electrostatic confinement (IEC) device for plasma production and acceleration, respectively. Several diagnostics such as a ... Read More
