See How Multiphysics Simulation Is Used in Research and Development
Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2024 Collection
This body of work uses the two dimensional finite element heat transfer capabilities of the conduction application mode within COMSOL to examine the temperature distribution in the fluid, pipe wall, insulation, and surrounding soil of a prototypical bitumen pipeline operating in a cold ... Read More
Analysis of burning candles is extremely complex; combustion produces a highly non-linear temperature profile through the flame in which local temperatures may exceed 1400 °C. Heat transfer includes radiation, conduction and convection components and the low melting point of the candle ... Read More
Students in engineering and science are often exposed early in their studies to non dimensional analysis. When it comes to solving fluid flow/heat transfer problems, many solutions, particularly industrial ones, are based on finite element/finite volume using dimensioned quantities. In ... Read More
The prediction of mechanical response of assemblies during arc welding necessitates the knowledge of thermal history of the components and the constitutive behavior of the materials. COMSOL can simulate thermal and structural interaction but it needs to evaluate the time evolution of ... Read More
This paper describes using thermal-structural interaction to model the shrinkage behavior in cement paste under drying. An inverse method of combining the finite element analysis and the least-squares method is implemented to fit experimentally determined shrinkage in order to obtain ... Read More
This document describes a method for maintaining the long-term calibration of a full color direct thermal printer. An essential component of the system is a thermal model created using COMSOL Multiphysics that allows fitting of color data recorded at different temperatures and exposure ... Read More
In the paper distributed parameter system models in the form of lumped-input/distributed-output systems are introduced and modeling of temperature fields of the die in the benchmark casting plant is presented. Temperature fields were modeled and studied using a finite element method ... Read More
This paper describes using thermal structural interaction to model the shrinkage behavior in cement paste under drying. An inverse method of combining the finite element analysis and the least-squares method is implemented to fit experimentally determined shrinkage in order to obtain ... Read More
There is considerable interest in the possibility of combining NTE materials with normal (positive) thermal expansion materials, to reduce the potential of failure of a material or component due to thermal stress fracture. Finite element analysis (FEM) is used to explore the overall ... Read More
This work describes the study of a thermal actuator and modifications to the materials employed in order to decrease power consumption and implementation costs. For this study, we worked on improving the thermal actuator described in the work of T. Ebefors. The criteria for choosing the ... Read More