See How Multiphysics Simulation Is Used in Research and Development
Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2024 Collection
The blood-brain barrier presents a unique and highly selective semipermeable barrier composed of endothelial and supporting cells. In stressed states, such as during systemic inflammation, the barrier can become “leaky”, increasing in permeability and leading to unwanted solutes from the ... Read More
Microbubble oscillations in the presence of ultrasound wave inside blood vessel have been widely studied for therapeutic applications like drug and gene delivery[1], blood-brain barrier opening[2], and lysis of blood clot[3] and cell membrane[4]. An oscillating bubble exerts stresses on ... Read More
The yeast Saccharomyces cerevisiae has been used for the study of aging in eukaryotic cells. The traditional method for this study uses micromanipulators which makes it difficult, time consuming and expensive. Over time, different microfluidic platforms, usually referred to as 'mother ... Read More
Microphysiological systems (MPS) combine microfluidics, MEMS, and biotechnology techniques to mimic human organ function in vitro. Such devices are being developed to provide better levels of tissue and organ functionality compared with conventional cell culture systems, and have great ... Read More
Recent events underscore the importance of rapid diagnostic tests for detecting viruses such as the SARS-CoV-2 coronavirus or for screening cancer biomarkers. Many fluidic-based diagnostics applications require careful control of chemical and biological species concentrations. In this ... Read More
While electrostatic actuators feature prominently among the most widely employed classes of actuators for microelectromechanical systems (MEMS), conventional embodiments of these devices (e.g., parallel plate structures) notoriously suffer from several significant drawbacks. Most ... Read More
Droplet-based microfluidic systems are emerging as an ideal platform for the high-throughput screening of eukaryotic cells aimed to understand the complex, multidimensional, and dynamic biological processes [1]. Here, two aqueous droplets – each containing a eukaryotic cell – suspended ... Read More
Near-field scanning optical microscopy (NSOM) unifies the potential of scanning probe technology with the power of optical microscopy as if like having eyes into the nanoworld. To efficiently channel the illumination light to the tip apex and acquire optical images beyond the diffraction ... Read More
The design of highly-sensitive thermoelectric microfluidic sensors for the characterization of biochemical processes is an important area of engineering research. This study reports three-dimensional numerical analysis of the critical design parameters of a continuous-flow biosensor with ... Read More
The use of computer simulations to analyze systems during the design process is a popular approach for validating and optimizing designs. But simulations are deterministic in nature and do not consider the uncertainty in design, manufacturing, and use of the product. Using predictive ... Read More