See How Multiphysics Simulation Is Used in Research and Development
Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2024 Collection
Microfluidic technologies can enable laboratory processes to be packaged in miniaturized and automated systems, allowing these processes to be performed with hand-held devices outside a laboratory environment. The practical usefulness of these “lab on a chip” systems has often been ... Read More
Additive manufacturing technology is becoming more popular for the fabrication of metal products as it offers rapid prototyping and large design freedom. However, part quality of components fabricated by current additive manufacturing technology is not comparable to that produced by ... Read More
Oxygen delignification is a technology established worldwide and a common operation in pulp mills that use Kraft cooking. The reasons for using this technology are the reduction of organochlorine compounds in the effluents, and economy of chemicals in the bleaching stage. The objective ... Read More
The aim of this research is to contribute with the development of Carbon Capture and Storage techniques by studying carbon dioxide (CO2) adsorption mechanisms in shale reservoirs. Gas desorption is considered a major gas production mechanism and has a relevant role in shale gas ... Read More
Core-shell type plasmonic nanoresonators have been optimized to maximize the fluorescence rate of coupled dipolar emitters, namely SiV color centers in diamond. The RF module of the COMSOL Multiphysics® software was applied to extract the optical response and to analyze the near-field ... Read More
Digital rock physics (DRP) is an emerging field where a rock sample is imaged, relevant physical processes are simulated numerically on the digital rock sample, and the numerical solutions are used for understanding and interpreting the rock in different in-situ conditions. The use of ... Read More
Most of the reported studies on the electrical characteristics of biological cells assume that they have simple shapes like spheres or ellipsoids due to the lack of information about their accurate 3D shape. However, the actual shape of a cell can be quite fractal and it must be taken ... Read More
Previously researchers have modeled the human body using CAD software to create geometries that are approximately the same shape as the human body. While these CAD designs appear similar, they do not account for complex organ anatomy or sudden changes at the skin surface. Now, the human ... Read More
In order to qualify experiments for in-vessel irradiation at the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory, safety assessments need to be completed and documented to ensure adequate target cooling and structural integrity. Previously, finite element analysis ... Read More
Simulation based learning modules can be effectively introduced to a large audience with customization. The simulation modules can essentially engage learners from diverse background and efficiently introduce the quantitative approaches to non-engineers. Moreover, those can greatly help ... Read More