See How Multiphysics Simulation Is Used in Research and Development
Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2024 Collection
An "electroacoustic absorber" is a loudspeaker, used as an absorber of sound, which acoustic impedance can be varied by electrical means. This can be achieved either by plugging passive shunt electric networks at the loudspeaker terminals ("shunt loudspeakers") or by feeding back the ... Read More
Finite element simulations performed through COMSOL Multiphysics are used to study the long-term performance of BHE fields placed in a water-saturated porous soil subjected to groundwater movement. The heat transfer problem is written in a dimensionless form and the long-term time ... Read More
The article deals with the magnetically-supported high-power full-penetration laser beam welding of aluminum. A stationary simulation was conducted accounting for the effects of natural convection, Marangoni convection and solid-liquid phase transition as well as an electromagnetic ... Read More
Even though the researches in synchronous machines are advanced, the practical design still is a problem because of the complex interaction between several design parameters. The project “EaSync” at the Ostfalia University focuses on the bundling of machine models using COMSOL ... Read More
Since October 2009 the laboratory of ATE has carried out collaborative research with the WTD 71 that aims for prediction, reduction and optimization of so-called underwater electric potential (UEP) signatures. COMSOL is used to simulate potential distributions in the context of impressed ... Read More
This article describes the response of the knitted fabric to the mechanical loading and how a simplified FE model can approach realistically the response of the structure to the mechanical loading. The knitted fabric is made of nitinol material, which belongs to the group of shape memory ... Read More
Heat and mass transfer through a gypsum board exposed to fire is simulated and compared to experimental data. The gypsum board is modeled as a porous medium with moist air in the pores. A dehydration front develops at the fire side and travels through the board, consuming energy and ... Read More
Polymer electrolyte membrane (PEM) fuel cells have significant potential as a source of clean, efficient energy production. This study presents a three-dimensional, non-isothermal, fully-coupled model of a PEM fuel cell with printed circuit board current collectors. The effect of the ... Read More
A fuel cell is an electrochemical system, which converts chemical energy into electricity by a controlled reaction of hydrogen and oxygen. The performance of the electrode is likewise determined by its material and the microstructure. The simulations were performed directly on ... Read More
There is a considerable world-wide interest among lightning protection engineers and designers on the improvement of the standard procedures to assess the location of the most vulnerable places on complex structures to be struck by lightning flashes. This paper presents the ... Read More