See How Multiphysics Simulation Is Used in Research and Development
Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2024 Collection
Studies by Nishaat (2009) showed that Terzaghi\'s bearing capacity model didn\'t adequately predict the bearing capacity failure in Philippi Dune sands. Nishaat carried out her investigation using a physical model that was built in a geotechnical laboratory. The failure surfaces she ... Read More
For PE insulated cables both the temperature difference ?T and the electric field coefficient ? have a significant influence on the electric field distribution because PE has a nonlinear electric conductivity which is approximately a function of the temperature and the electric field ... Read More
The geometrical design and material choice for a refractory lining requires a good understanding of its thermo-mechanical behavior. Design engineers clearly need a tool for fast and efficient computation of thermo-mechanical state of refractory linings under various conditions. However, ... Read More
A resonant MEMS sensor for viscosity and mass density measurements of liquids was modeled. The device is based on Lorentz-force excitation and features an integrated piezoresistive readout. The core sensing element is a rectangular vibrating plate suspended by four beam springs. The ... Read More
An Ion Mobility Spectrometer is a device to analyze different components of a gas mixture. A feature of this technology is the ultra-low detection limit which can be obtained for most trace gases. Due to a limited resolution which is needed to differ between different components an ... Read More
Geothermal heat production from deep reservoirs (5000-7000 m) is currently examined, not only in Germany. Our reference set-up consists of two pipes within a single borehole: one for pumping. We examine a design, where a single borehole splits into two legs at a certain depth. The two ... Read More
The efficiency of borehole heat exchangers (BHEs) for geothermal purposes depends not only on material properties but also on their geometrical design. These days most used design consists of two parallel arranged U-shaped pipes which are embedded in a high-conductive shell filling out ... Read More
The authors present a closer look on the Single-Well Injection-Withdrawal Experiment (SWIW) or Push-Pull Experiments and its ability to determine the groundwater velocity, as one of the major parameters concerning reservoir management and underground reservoir characterization. The flow ... Read More
A novel method for groundwater lowering, which can be applied at construction sites, for aquifer remediation measures or in open mining, is proposed. In contrast to conventional techniques, dewatering is achieved without water conveyance. In this paper the physical concept of the new ... Read More
In this paper heat losses and gains are assessed for a specific measuring set-up improving the validity of performance data to accurately predict the initial stage of a boiling curve. Simulation focus on achieving results predicting real measuring data of a plain surface structure. ... Read More