See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
A comparison of the commercial code COMSOL is performed with the bench-mark solutions provided by the literature for a tall, differentially heated rectangular cavity for aspect ratios of 8, 15, 20, and 33. At small Rayleigh numbers the flow is dominated by conduction. As the Rayleigh ... Read More
Identifying molecules requires associating molecular structures with their electronic energy levels. In this paper we introduce a novel technique for the calculation of molecular Rydberg levels. The technique allows for easy visualization of the associated wavefuntions to make ... Read More
The collection efficiency of aerosol particles on a ribbon in a turbulent flow is analyzed using COMSOL Multiphysics. The flow field is solved using Chemical Engineering module and particle tracing plots are obtained using equations of motion including Khan and Richardson drag force. A ... Read More
In this study, numerical simulations of mixing in turbulent flow, subject to a change in density, are performed. Attention is focused on the binary mixing between two streams of fluid in which a variable density step are formed due to a difference in the temperature. This binary mixing ... Read More
Mixing is characterized in liquids moving between bubbles when the bubbles are moving down a microfluidic channel. The shape is assumed based on fluid mechanical arguments and experimental observations, and the mixing is characterized for a variety of situations in two and three ... Read More
Accurate modeling of magnetostrictive materials and devices requires coupling of electrical, magnetic, mechanical, and possibly acoustic domains. There are relatively few finite element software packages that include all these physical models and even fewer that include magnetostrictive ... Read More
Aging infrastructure requires frequent inspections to assess their structural integrity. However, the large amount of existing infrastructure, and the distance between these structures present significant challenges to inspectors. Acoustics-based technologies represent a simple, and ... Read More
We present an implementation of the Structural Mechanics module of COMSOL Multiphysics to model the state of stress associated with the emplacement of large volcanic edifices on the surface of a planet. These finite element models capture two essential physical processes: (1) Elastic ... Read More
A fast, high-sensitivity detector is required for studies of environmentally relevant gases. Photoacoustic spectroscopy (PAS), an absorption spectroscopy technique in which absorption is detected as sound, is explored as a possible solution. A tuning-fork based PAS sensor is modeled ... Read More
A 3D finite element model (FEM) of the PEMC sensor was developed to characterize the modes of vibration that have demonstrated high sensitivity to mass-change in experimentally fabricated sensors. The fundamental bending mode of vibration and the 1st bending harmonic are predicted at 10 ... Read More
