See How Multiphysics Simulation Is Used in Research and Development
Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2024 Collection
In this paper we present results of the mathematical modeling of AC electroosmotic micropumps. Unlike others we use the full dynamic description, instead of the linearized model. Skewed hybrid discretization meshes are employed in order to accurately capture the main features of the ... Read More
This paper proposes a FEM model for a segment of a nervous cell axon, which takes into account, through the so called Hodgkin-Huxley equations, the non linear and time varying dynamics of the membrane surrounding it. A combination with Maxwell equations is performed in a numerical ... Read More
Postoperative or paralytic Ileus (PI) is a temporary aftermath of major abdominal surgeries. PI prevents the passage of food throughout the lumen leading to bloating, distension, emesis and pain. A plausible mathematical model for this phenomenology physiologically fine tuned including ... Read More
The silicon diaphragm is one of the most common structures in Micro-Electromechanical Systems (MEMS). However, it is susceptible to creep deformation at elevated temperatures. This paper presents a transient finite element model which simulates the mechanical behavior of the ... Read More
In biomedical research the use of animal models gives rise to several ethical problems. COMSOL Multiphysics® may be used as a non-animal technique, very useful in overcoming all these concerns. In this presentation a particular application in dermatology is shown. Bioheat equation ... Read More
Cantilever vibration in fluid environment is probably one of the most common Fluid Structure Interaction problems in the field of Micro/Nano Electro Mechanical Systems. Usually the effect of fluid on cantilever oscillation is characterized in terms of mode resonance frequencies and ... Read More
A numerical finite element model of one human brain is built in COMSOL in order to study a particular form of hydrocephalus, the so called Normal Pressure Hydrocephalus (NPH). The geometry of the ventricles and the skull is obtained by Magnetic Resonance Imaging (MRI) and imported in ... Read More
In this work, we show that dipolar magnetic coupling can be used to control the particle flow through microfluidic structures without changing the state of motion of the carrier liquid. Also no external magnetic gradient fields are employed; the total external magnetic force applied is ... Read More
The method to derive upscaled expressions for the dispersion coefficients for reactive flow in a porous medium uses a periodic unit cell (PUC), which consists for instance of a spherical grain in a cube, but nothing prohibits defining more complex PUC's. Homogenization leads to a coupled ... Read More
We combine the potentiality of COMSOL with Monte Carlo optimization procedures, referred to as Simulated Annealing and Genetic Algorithm, in order to analyze and interpret ground deformation measured in active volcanic areas. Through MATLAB® subroutines, we use FE (Finite Element) ... Read More