See How Multiphysics Simulation Is Used in Research and Development
Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2024 Collection
As it is known nano-sized emitters (such as atoms, quantum dots and point defects in diamonds) interaction with nano-environment leads to drastic changes of their decay rate and therefore lifetime (Purcell effect). To calculate the influence in general one needs to solve equations of ... Read More
Solders are typically used to join similar or dissimilar metals, referred to as substrates. In some cases solders are also used to join completely different classes of materials. For example, a joint between copper busbar and silicon solar cell represents a set of dissimilar ... Read More
Fundamental component of the NMR tomograph is the magnet. By using the property of superconductivity it is possible to achieve an induction field extremely homogeneous, stable and high. To maintain the material below the superconducting critical temperature (7.2K), the coils are immersed ... Read More
Brownian ratchets and electric fields are used for the transport of membrane components. Transport is achieved through the combination of a pattern with free diffusion. We show a good agreement between simulation and experiment, therefore allowing for further optimisation of the ratchets ... Read More
High levels of Indoor Air Quality (IAQ) in Operating Theatres (OT) is an important issue in order to contribute in prevention of Surgical Site Infections (SSI). Despite of specific plant layouts are applied for OT ventilation (e.g. unidirectional flow), the effective use conditions can ... Read More
The thermoacoustic combustion instabilities are complex phenomena that may occur in steady flow combustion systems that are aboard of, e.g., rocket engines or gas turbines. The phenomena involve the interaction of chemical reactions with fluid-dynamic and propagation of pressure waves in ... Read More
The aim of present work is to present and calibrate a new mechanistic model that includes physical and biokinetic processes to reproduce the algae growth in photobioreactor or ponds during long-term scenarios. A COMSOL Multiphysics® model is used to implement the microalgae processes ... Read More
An industrial pulp screen is investigated. The dilute pulp is pumped through a screen barrier. In order to avoid the fiber network to plug, it is necessary to 1) fluidize the shear thinning pulp 2) expose the barrier with plug releasing pressure pulses. This work involves a 2-step ... Read More
The aim of this work is to present a model capable to describe the behaviour of a thermal flow sensor under every physical aspect. A generic thermal flow sensor relates the flow properties with a variation in the temperature profile inside the device itself. Thus, it is locally heated ... Read More
The paper presents a methodology to account for local mean-flow effects on thermo-acoustic instabilities to improve typical calculations performed under the zero-Mach number assumption. A 3D FEM model of a simplified combustor is solved with COMSOL Multiphysics® Pressure Acoustics ... Read More