See How Multiphysics Simulation Is Used in Research and Development
Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2024 Collection
In recent years, conventional rigid and planar sensor devices are gradually substituted by flexible and stretchable alternatives. This paradigm shift has paved the way to entirely new applications, particularly in the field of personalized health monitoring or environmental sensing. ... Read More
Nondestructive inspection (NDI) of damages (e.g., imperfect or degraded bonding lines) or the remaining strength of adhesively bonded lap joints is critical for the operational safety of aircrafts and vehicles. It remains a challenge to use the conventional NDI to quantitatively infer ... Read More
The objective of the work is to propose a reliability enhancement model for antigen detection system (ADS) using bio MEMS based cantilever array sensors using heterogeneous modular redundancy technique. The reliability of the ADS is expressed in terms of the constituent sub systems which ... Read More
Field-effect transistors (FETs) exhibit favourable characteristics for biological and chemical sensing applications, including multi-parameter response, tunable sensitivity, and inherent amplification [1], [2]. As sensors, FETs employ their gate or active channel as a sensing area, where ... Read More
Pressurised Heavy Water Reactors (PHWR) play a prominent role in contributing power for the Nuclear Energy Programme in India. In 540MWe type PHWR reactors, there are horizontally placed Liquid Injection Shutdown System (LISS) tubes for injecting poison into the moderator to clamp down ... Read More
Introduction Most current thermoregulation models represent the body in significantly simplified forms, e.g., cylinders or spheres. These simple geometries do not fully represent the complexity of bones, organs, etc. contained in the human body. Modern medical technologies allow for more ... Read More
压电材料在受到机械应力时会产生电压,这种性质使压电材料在声波传感器领域具有广泛应用。湿度的测量和把控广泛地应用于粮食贮存、气象预报与加工以及国防建设等各个领域。当今社会对各种成本低、性能优异的湿度传感器的需求正在日益上升。石英晶体微天平(QCM)具有高灵敏度、无需物理接触、体积小、易于集成等特点,通过在石英晶体微天平表面覆盖一层能够响应水分子的材料,可以监测环境中的湿度。这种材料能够吸收和解吸水分,从而改变石英晶体的质量,进而影响其共振频率。通过检测这一频率的变化,我们可以准确获取周围的相对湿度。本研究利用有限元软件COMSOL的多物理场耦合功能 ... Read More
Biomemebranes are characterized by several elastic parameters that appropriately describe the energetics of their deformation under thermal fluctuations [1]. When their structure is quasi-two-dimensional (namely lipid bilayer 4-5 nm thick), several recent studies [1,2] showed that their ... Read More
In collaboration with STMicroelectronics, UNIFI employed advanced multiphysics simulations to optimize the electroplating processes used in chip manufacturing. This project focused on enhancing the uniformity and quality of copper layers deposited on microchips, which are integral ... Read More
In this work, a 2.8x0.22 μm^2 silicon strip waveguide (n = 3.43 @4.234 μm) on a silica substrate (n = 1.38 @4.234 μm) and a superstrate with n = 1 was designed and evaluated through 2D (i.e., mode analysis), and 3D (i.e., wave propagation) analysis to strengthen the interaction between ... Read More