See How Multiphysics Simulation Is Used in Research and Development
Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2024 Collection
As a general definition, the presence of any repeated motion after a regular interval of time is known as vibrations. The basic theory of vibrations is described by the system of forces acting on a moveable and deformable body. The natural phenomena existing in the universe such as ... Read More
Previous to the present work, a formal calculation was approved [1,2] to support the operation of the High Flux Isotope Reactor (HFIR) Horizontal Beam-Tube 1 of 4 (HB-1). The present calculation [3,4] repeats the previous work using COMSOL Multiphysics® software and extends the analysis ... Read More
3D finite element analysis model has been constructed for testing the directional dependence in a novel form of nanowire array gas flow sensor. Single nanowire (p-type single crystal Silicon) model is developed using fluid structure interaction and piezoresistivity components in the MEMS ... Read More
Atomic layer deposition(ALD) is one proven method to deposit ultra-thin films. ALD is advantageous for its atomic-level thickness control and conformity; leading to high quality films. Slow deposition rates for conventional ALD contribute to the impracticality of utilization of this ... Read More
With offshore oil and gas exploration and production moving into ever deeper waters, the suspended length of marine risers (transporting hydrocarbons from the seabed to the surface) can easily exceed 3000 meters. One of the major design requirements for risers in (ultra) deep water is to ... Read More
: One of the most commonly used techniques for quantification of beating forces exerted by cardiomyocytes is culturing them on a bed of vertical microcantilevers or microposts. The position of the microcantilevers is observed through advanced imaging techniques and the displacements are ... Read More
Nowadays, mathematical models have been widely applied in varies fields; especially in fluid mechanics and nonlinear material which are very complex or even not possible to be calculated using analytical methods. In this paper, a hydraulic displacement amplifier coupled with fluid ... Read More
We are working on a microfabricated lysing chip that uses a piezoelectric actuator to provide ultrasonic energy to break apart cells. The device contains pillars with varying dimensions. We hypothesize that increasing the aspect ratio of pillars will increase the efficiency of the ... Read More
Simulation of the flow behaviour of non-Newtonian fluids with high viscosities leads to special material models with specific material parameters. In this presentation, a material model consisting of 4 material parameters describing the flow itself and also the wall slip is presented. ... Read More
This work presents new Fluid-Structure Interaction (FSI) models in both 2D and 3D of the effect of using vascular stents as treatment of cerebral berry aneurysms. The stent is positioned inside the cerebral artery covering the neck of the aneurysm. The stent is expected to alter the ... Read More