See How Multiphysics Simulation Is Used in Research and Development
Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2024 Collection
Cantilever vibration in fluid environment is probably one of the most common Fluid Structure Interaction problems in the field of Micro/Nano Electro Mechanical Systems. Usually the effect of fluid on cantilever oscillation is characterized in terms of mode resonance frequencies and ... Read More
This paper presents model development and simulation results for a microdroplet generator capable of internally measuring the volume of dispensed droplets. The system’s integrated sensing is enabled by storing compressible gas adjacent to the dispenser’s liquid reservoir. During ... Read More
The presented paper describes a method for micro precision assembly of very small objects like future microchips, which have a lateral expansion equal to or smaller than 500 μm. The modelling and simulation of a fluidicbased micro assembly method for a microchip with a dimension of ... Read More
In this work, an electrostatic diaphragm micropump is investigated by means of COMSOL Multiphysics®. A fluid-dynamic model is adopted to evaluate the fluid flow characteristics inside the pumping chamber, in static conditions. In parallel, electromechanical quasi-static simulations ... Read More
Multiphysics optimization of thermal-fluid systems is an emerging area of interest with application to the development of high performance cooling technologies for electronic systems. This paper builds on previous work focused on the development of a computational platform for numerical ... Read More
Atherosclerosis is a disease that narrows, thickens, hardens and restructures a blood vessel due to substantial plaque deposit. In the Carotid Artery, the decision to treat using endarterectomy and stenting is determined by the velocity as measured by Doppler flow in the common Carotid ... Read More
The approach of this project is Modeling a Coriolis Mass Flow-meter (CMF) bases on a Fluid-Structure Interaction (FSI) device. The "Coriolis mass flow-meter sensor" is modeled using COMSOL Multiphisics® simulation, the Acoustic-Shell Interaction physics interface and coupled by FSI ... Read More
Energy harvesting from a fluid flow using piezoelectric materials is a relatively recent topic that has been investigated experimentally and numerically [1, 2]. Its possible application in natural water currents represents an interesting strategy to easily harvest renewable energy from ... Read More
Digital rock physics (DRP) is an emerging field where a rock sample is imaged, relevant physical processes are simulated numerically on the digital rock sample, and the numerical solutions are used for understanding and interpreting the rock in different in-situ conditions. The use of ... Read More
Fluids used in biomedical microelectromechanical systems (BioMEMS) devices often exhibit very different flow behavior from those in bulk solutions, which in turn affects the behavior of cells and biomolecules in the device. In this work, we investigate an integrated microfluidic system ... Read More