See How Multiphysics Simulation Is Used in Research and Development
Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2024 Collection
The Complementary Metal-Oxide-Semiconductor (CMOS) technology is a gateway to fabricating low cost electronic and photonic components to date. The Silicon-based nanophotonics platform leverages CMOS technology to fuel the effort to provide increasingly high-speed and high-bandwidth ... Read More
Venovenous extracorporeal life support (VV-ECLS) provides gas exchange support for severe lung failure by using an extracorporeal circuit consisting of a blood pump and an artificial membrane lung. Blood is withdrawn from a cannula placed into the inferior vena cava, and returned from ... Read More
Bioresorbable stents are providing temporary mechanical support to keep a narrowed or blocked coronary artery open and restore the blood flow and will be gradually degraded and resorbed after the healing and remodeling of arterial wall. This new generation of stents has lower rates of ... Read More
An acoustic energy harvesting system at low frequency (~200 Hz) using lead zirconate titanate (PZT) piezoelectric cantilever plates placed inside of a quarter-wavelength straight-tube resonator has previously been studied using COMSOL and verified experimentally. When an incident ... Read More
Valves are widely used to control fluid flow in various engineering applications. It’s crucial to study the flow characteristics inside the valve and the fluid-structure interaction between the fluid and valve’s sleeve for design, optimization and improvement of valves. However, because ... Read More
Introduction: In this project, COMSOL Multiphysics® and SolidWorks® are employed to model and simulate a mechanically coupled MEMS resonator with varying masses. These resonators consist of three main components: springs on each end to allow the structure to move, a shuttle mass for ... Read More
Electric Arc Furnaces (EAF) use graphite electrodes to strike an arc to melt scrap steel, recycling it for further use. These graphite electrodes oxidize and are consumed over time. To maintain operation new electrodes are attached to others via a joint of complex geometry and fed ... Read More
Electroplated CoFe alloys demonstrating Joule magnetostriction (i.e., a large change in material shape induced by an applied magnetic field) have been recently developed for the creation of microfabricated magnetoelastic resonators for tagging applications. This development requires a ... Read More
This paper presents the design and simulation of novel micrometer-scale capacitive temperature sensors, which could serve as a component for miniaturized wireless sensor nodes for the internet of things requiring structural flexibility and optical transparency. The proposed sensor design ... Read More
Necrosis of human tissue can typically be obtained by exposure to temperatures below 40°C or above +50°C. However, inherent variability in tissue properties, the complexity of tissue response and dissipation of thermal energy by local perfusion or blood flow can make the development of ... Read More