The Application Gallery features COMSOL Multiphysics® tutorial and demo app files pertinent to the electrical, structural, acoustics, fluid, heat, and chemical disciplines. You can use these examples as a starting point for your own simulation work by downloading the tutorial model or demo app file and its accompanying instructions.
Search for tutorials and apps relevant to your area of expertise via the Quick Search feature. Note that many of the examples featured here can also be accessed via the Application Libraries that are built into the COMSOL Multiphysics® software and available from the File menu.
This application models a DC glow discharge. The electron energy distribution function (EEDF) and electron transport properties are computed with the Boltzmann Equation, Two-Term Approximation interface. Since input parameters for the Boltzmann Equation, Two-Term Approximation interface, ... Read More
This model demonstrates how the sun causes 1.75 arcseconds of deflection for rays grazing the sun's surface as observed from the earth. Einstein predicted this value after refining his theory of relativity during World War I. Read More
In this example, a hydrogen plasma reactor at moderate pressure is studied using a global model. The heavy species heat equation is included. In the first part of the study, a Maxwellian electron energy distribution function is used. In the second part, the global model is solved self ... Read More
The model illustrate the technique to calculate the magnetic stiffness in a 3D geometry of a permanent magnet axial magnetic bearing. The Magnetic Fields physics is used to model the bearing and compute the magnetic forces. The Deformed Geometry and Sensitivity physics are used to ... Read More
The model of 1D Dielectric Barrier Discharge (DBD) has been recomputed with the three different kinds of electron energy distribution functions (EEDFs): The Maxwellian function The Druyvesteyn function The computed EEDF based on the Boltzmann Equation, Two-Term Approximation ... Read More
This is a primer model of a permanent magnet machine. It is a generic model that can be modified to simulate a motor or generator. It demonstrates different capabilities of COMSOL Multiphysics® to examine aspects of machine design, such as air gap magnetomotive force (MMF), ... Read More
This model is a static 3D simulation of a generator having a rotor with permanent magnets. The center of the rotor consists of annealed medium carbon steel, which is a nonlinear ferromagnetic material that is saturated at high magnetic flux densities. The core is surrounded by several ... Read More
This tutorial shows how the displacement field of a deformed surface can be fit to a Zernike polynomial basis. The method of linear least-squares fitting is made significantly easier when fitting to an orthonormal basis, such as the Zernike polynomials on a circle. The displacement ... Read More
Switched reluctance motors work on the principle of reluctance torque. The stator and rotor will interact so as to minimize the reluctance for the flux path. This application simulates the behavior of the motor when the stator winding is excited with a step voltage and the rotor being ... Read More
An interesting question was raised in the 1950s by the mathematician Ernst Straus that, in an arbitrarily shaped empty room with side walls made of perfect mirrors, will a point light source always illuminate the whole room? This question was answered by the Nobel Prize-winning ... Read More