The Application Gallery features COMSOL Multiphysics® tutorial and demo app files pertinent to the electrical, structural, acoustics, fluid, heat, and chemical disciplines. You can use these examples as a starting point for your own simulation work by downloading the tutorial model or demo app file and its accompanying instructions.
Search for tutorials and apps relevant to your area of expertise via the Quick Search feature. Note that many of the examples featured here can also be accessed via the Application Libraries that are built into the COMSOL Multiphysics® software and available from the File menu.
This example exemplifies how to compute the design sensitivities of your COMSOL Multiphysics® model. A more detailed description of the modeling process can be seen in the blog post "Computing Design Sensitivities in COMSOL Multiphysics". Read More
Bicycle wheels are laced tangentially if they are intended to be used with disc brakes, because a radial pattern gives rise to larger forces in the rim. Otherwise, these rim forces are largely independent of the braking force. Read More
This example exemplifies how to model the impedance of a waveguide of varying cross sectional area. A more detailed description of the phenomenon and the modeling process can be seen in the blog post "Computing the Impedance of a Corrugated Waveguide". Read More
The model features the optimization of the geometry of a complex-shaped coil similar to those for induction heating applications. The geometry if fully built and parametrized in COMSOL Multiphysics (taking advantage of Geometry Parts; geometrical construction requires Design Module). The ... Read More
In this model, the electrical performance of a W-band waveguide to microstrip line transition (WMLT) is investigated. A standard WR10 waveguide is used and the transition from waveguide to microstrip line is achieved by utilizing the longitudinal probe (also known as E-plane probe) ... Read More
The Dzhanibekov effect, also called the intermediate axis theorem or tennis racket theorem, describes the behavior of a rigid body with three distinct principal moments of inertia. This simulation app can be used to test the Dzhanibekov effect in three different geometries, including a ... Read More
This demonstration app will fit a surface through a set of points using radial basis functions and will write out a COMSOL-format file of a smooth NURBS surface that passes through all of the points. The function describing the surface can also be written to a text file. The point data ... Read More
This model is used to demonstrate the solution to a classic brainteaser in electromagnetics. A long loop of wire is connected to a source and a receiver, which are placed 1 meter apart. The objective of the model is to compute how long it takes for the receiver to sense when the source ... Read More
This model analyzes Joule heating and thermal expansion in a bond wire in an LED. Its purpose is to estimate the temperature increase and the resulting mechanical stresses in the bond wire due to thermal expansion. The magnitude of these stresses can be used to assess the risk of fatigue ... Read More
This example exemplifies how you can export the data from your mesh and results to a text file. A more detailed description of the phenomenon and the modeling process can be seen in the blog post "Exporting Meshes and Solutions Using the Application Builder". Read More