See How Multiphysics Simulation Is Used in Research and Development
Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2024 Collection
Finite elements using COMSOL Multiphysics have been used to simulate the edge plasma in a large area capacitively coupled RF reactor. In order to reduce numerical difficulties simplified reactor edge geometries have been used. First results show the importance of electrostatic double ... Read More
The state of the art technology is moving towards more complex and multidisciplinary processes and systems. There is a growing interest in using Multi-physics simulations to have a better understating of the underpinning science of the processes as well as providing cost-effective ... Read More
The Spark Plasma Sintering is a breakthrough way of elaboration of more or less complex shape materials from powder. This process allows the sintering of materials in few minutes compare to hours by conventional sintering. One of the main goals of the SPS modeling is to be able to ... Read More
Recently, the advanced plasma tools have been using very high frequency power sources (>100 MHz) and their combination to excite plasma utilized in semiconductor technology. This approach is evoking the regimes that are less understood and currently a subject to many studies and ... Read More
Process Hardware for heating, etching and plasma deposition in vacuum processes on Silicon wafers or glass substrates face challenging requirements due to very shallow and extended structures. Molecular Flow calculations are used to evaluate staggered shields with the aim to protect ... Read More
The main objective of this study is to evaluate the thermal behavior of a plasma micro-discharge in two different gases within a silicon micro hole (close to hundred micrometers in size). The first stage of the simulation based on the Heat Transfer module can return very promising ... Read More
The acceleration of protons and ions by highly intense, ultra-short laser pulses is a very active field of experimental and theoretical research. From laser-plasma interactions the emission of a strong electromagnetic pulse (EMP) has often been reported as a side effect. It potentially ... Read More
The Helicon Injected Inertial Plasma Electrostatic Rocket (HIIPER) is an electric space propulsion concept to generate denser ion and electron beams using inertial electrostatic confinement (IEC) fusion theory and helicon source. Helicon source is employed to generate the plasma and the ... Read More
Plasma electrolytic polishing (PeP) is an electrochemical method for surface treatment. In detail PeP is a special case of anodic dissolution [1] that unlike electrochemical polishing requires higher voltage and uses environment friendly aqueous solutions of salts. When the process ... Read More
It has already been demonstrated that fluid models can be used to simulate two-dimensional axisymmetric inductively coupled plasma via implementation in the COMSOL (multi-physics simulation software) platform. In this study, we improved the model and simulated a large scale magnetized ... Read More